1,501 research outputs found
Multiple State Representation Scheme for Organic Bulk Heterojunction Solar Cells: A Novel Analysis Perspective
The physics of organic bulk heterojunction solar cells is studied within a
six state model, which is used to analyze the factors that affect
current-voltage characteristics, power-voltage properties and efficiency, and
their dependence on nonradiative losses, reorganization of the nuclear
environment, and environmental polarization. Both environmental reorganization
and polarity is explicitly taken into account by incorporating Marcus
heterogeneous and homogeneous electron transfer rates. The environmental
polarity is found to have a nonnegligible influence both on the stationary
current and on the overall solar cell performance. For our organic bulk
heterojunction solar cell operating under steady-state open circuit condition,
we also find that the open circuit voltage logarithmically decreases with
increasing nonradiative electron-hole recombination processes.Comment: 6 pages, 4 figure
MTRAC - A computer program for analysis of circuits including magnetic cores. Volume 2 - Input data and program listing
Input data cards program listing for MTRA
The projection of a nonlocal mechanical system onto the irreversible generalized Langevin equation, II: Numerical simulations
The irreversible generalized Langevin equation (iGLE) contains a
nonstationary friction kernel that in certain limits reduces to the GLE with
space-dependent friction. For more general forms of the friction kernel, the
iGLE was previously shown to be the projection of a mechanical system with a
time-dependent Hamiltonian. [R. Hernandez, J. Chem. Phys. 110, 7701 (1999)] In
the present work, the corresponding open Hamiltonian system is further
explored. Numerical simulations of this mechanical system illustrate that the
time dependence of the observed total energy and the correlations of the
solvent force are in precise agreement with the projected iGLE.Comment: 8 pages, 9 figures, submitted to J. Chem. Phy
MTRAC - A computer program for analysis of circuits including magnetic cores. Volume 1 - Computation, program, and application Final report
Method of computation, organization, and applications of Modified transient analysis by compute
Optical properties of current carrying molecular wires
We consider several fundamental optical phenomena involving single molecules
in biased metal-molecule-metal junctions. The molecule is represented by its
highest occupied and lowest unoccupied molecular orbitals, and the analysis
involves the simultaneous consideration of three coupled fluxes: the electronic
current through the molecule, energy flow between the molecule and
electron-hole excitations in the leads and the incident and/or emitted photon
flux. Using a unified theoretical approach based on the non-equilibrium Green
function method we derive expressions for the absorption lineshape (not an
observable but a ueful reference for considering yields of other optical
processes) and for the current induced molecular emission in such junctions. We
also consider conditions under which resonance radiation can induce electronic
current in an unbiased junction. We find that current driven molecular emission
and resonant light induced electronic currents in single molecule junctions can
be of observable magnitude under appropriate realizable conditions. In
particular, light induced current should be observed in junctions involving
molecular bridges that are characterized by strong charge transfer optical
transitions. For observing current induced molecular emission we find that in
addition to the familiar need to control the damping of molecular excitations
into the metal substrate the phenomenon is also sensitive to the way in which
the potential bias si distributed on the junction.Comment: 56 pages, 8 figures; submitted to JC
Molecular transport junctions: Current from electronic excitations in the leads
Using a model comprising a 2-level bridge connecting free electron reservoirs
we show that coupling of a molecular bridge to electron-hole excitations in the
leads can markedly effect the source-drain current through a molecular
junction.In some cases, e.g. molecules that exhibit strong charge transfer
transitions, the contribution from electron-hole excitations can exceed the
Landauer elastic current and dominate the observed conduction.Comment: 4 pages, 2 figures, submitted to PR
A mesoscopic ring as a XNOR gate: An exact result
We describe XNOR gate response in a mesoscopic ring threaded by a magnetic
flux . The ring is attached symmetrically to two semi-infinite
one-dimensional metallic electrodes and two gate voltages, viz, and
, are applied in one arm of the ring which are treated as the inputs of
the XNOR gate. The calculations are based on the tight-binding model and the
Green's function method, which numerically compute the conductance-energy and
current-voltage characteristics as functions of the ring-to-electrode coupling
strength, magnetic flux and gate voltages. Our theoretical study shows that,
for a particular value of () (, the elementary
flux-quantum), a high output current (1) (in the logical sense) appears if both
the two inputs to the gate are the same, while if one but not both inputs are
high (1), a low output current (0) results. It clearly exhibits the XNOR gate
behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure
Dissipation enhanced vibrational sensing in an olfactory molecular switch
Motivated by a proposed olfactory mechanism based on a
vibrationally-activated molecular switch, we study electron transport within a
donor-acceptor pair that is coupled to a vibrational mode and embedded in a
surrounding environment. We derive a polaron master equation with which we
study the dynamics of both the electronic and vibrational degrees of freedom
beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We
show: (i) that in the absence of explicit dissipation of the vibrational mode,
the semiclassical approach is generally unable to capture the dynamics
predicted by our master equation due to both its assumption of one-way
(exponential) electron transfer from donor to acceptor and its neglect of the
spectral details of the environment; (ii) that by additionally allowing strong
dissipation to act on the odorant vibrational mode we can recover exponential
electron transfer, though typically at a rate that differs from that given by
the Marcus-Jortner expression; (iii) that the ability of the molecular switch
to discriminate between the presence and absence of the odorant, and its
sensitivity to the odorant vibrational frequency, are enhanced significantly in
this strong dissipation regime, when compared to the case without mode
dissipation; and (iv) that details of the environment absent from previous
Marcus-Jortner analyses can also dramatically alter the sensitivity of the
molecular switch, in particular allowing its frequency resolution to be
improved. Our results thus demonstrate the constructive role dissipation can
play in facilitating sensitive and selective operation in molecular switch
devices, as well as the inadequacy of semiclassical rate equations in analysing
such behaviour over a wide range of parameters.Comment: 12 pages, 6 figures, close to published version, comments welcom
Exact analytical evaluation of time dependent transmission coefficient from the method of reactive flux for an inverted parabolic barrier
In this paper we derive a general expression for the transmission coefficient
using the method of reactive flux for a particle coupled to a harmonic bath
surmounting a one dimensional inverted parabolic barrier. Unlike Kohen and
Tannor [J. Chem. Phys. 103, 6013 (1995)] we use a normal mode analysis where
the unstable and the other modes have a complete physical meaning. Importantly
our approach results a very general expression for the time dependent
transmission coefficient not restricted to overdamped limit. Once the spectral
density for the problem is know one can use our formula to evaluate the time
dependent transmission coefficient. We have done the calculations with time
dependent friction used by Xie [Phys. Rev. Lett 93, 180603 (2004)] and also the
one used by Kohen and Tannor [J. Chem. Phys. 103, 6013 (1995)]. Like the
formula of Kohen and Tannor our formula also reproduces the results of
transition state theory as well as the Kramers theory in the limits t->0 and
t->infinity respectively
- …
