6,429 research outputs found
Stationary and dynamical properties of a zero range process on scale-free networks
We study the condensation phenomenon in a zero range process on scale-free
networks. We show that the stationary state property depends only on the degree
distribution of underlying networks. The model displays a stationary state
phase transition between a condensed phase and an uncondensed phase, and the
phase diagram is obtained analytically. As for the dynamical property, we find
that the relaxation dynamics depends on the global structure of underlying
networks. The relaxation time follows the power law with the
network size in the condensed phase. The dynamic exponent is found to
take a different value depending on whether underlying networks have a tree
structure or not.Comment: 9 pages, 6 eps figures, accepted version in PR
An Electronic Mach-Zehnder Quantum Eraser
We propose an electronic quantum eraser in which the electrons are injected
into a mesoscopic conductor at the quantum Hall regime. The conductor is
composed of a two-path interferometer which is an electronic analogue of the
optical Mach-Zehnder interferometer, and a quantum point contact detector
capacitively coupled to the interferometer. While the interference of the
output current at the interferometer is shown to be suppressed by the
which-path information, we show that the which-path information is erased by
the zero-frequency cross correlation measurement between the interferometer and
the detector output leads. We also investigate a modified setup in which the
detector is replaced by a two-path interferometer.We show that the path
distinguishability and the visibility of the joint detection can be controlled
in a continuous manner, and satisfy a complementarity relation for the
entangled electrons.Comment: 5 pages, 2 figure
Counterfactual Quantum Cryptography
Quantum cryptography allows one to distribute a secret key between two remote
parties using the fundamental principles of quantum mechanics. The well-known
established paradigm for the quantum key distribution relies on the actual
transmission of signal particle through a quantum channel. This paper shows
that the task of a secret key distribution can be accomplished even though a
particle carrying secret information is not in fact transmitted through the
quantum channel. The proposed protocols can be implemented with current
technologies and provide practical security advantages by eliminating the
possibility that an eavesdropper can directly access the entire quantum system
of each signal particle.Comment: 19 pages, 1 figure; a little ambiguity in the version 1 removed;
abstract, text, references, and appendix revised; suggestions and comments
are highly appreciate
Direct sampling of the Susskind-Glogower phase distributions
Coarse-grained phase distributions are introduced that approximate to the
Susskind--Glogower cosine and sine phase distributions. The integral relations
between the phase distributions and the phase-parametrized field-strength
distributions observable in balanced homodyning are derived and the integral
kernels are analyzed. It is shown that the phase distributions can be directly
sampled from the field-strength distributions which offers the possibility of
measuring the Susskind--Glogower cosine and sine phase distributions with
sufficiently well accuracy. Numerical simulations are performed to demonstrate
the applicability of the method.Comment: 10 figures using a4.st
Vacuum state truncation via the quantum Zeno effect
In the context of quantum state engineering we analyze the effect of
observation on nonlinear optical -photon Fock state generation. We show that
it is possible to truncate the vacuum component from an arbitrary photon number
superposition without modifying its remaining parts. In the course of the full
dynamical analysis of the effect of observation, it is also found that the Zeno
and the anti-Zeno effects repeat periodically. We discuss the close
relationship between vacuum state truncation and so-called "interaction-free"
measurement.Comment: 4 pages, 2 figures, LaTeX; TeX errors fixe
Preroughening transitions in a model for Si and Ge (001) type crystal surfaces
The uniaxial structure of Si and Ge (001) facets leads to nontrivial
topological properties of steps and hence to interesting equilibrium phase
transitions. The disordered flat phase and the preroughening transition can be
stabilized without the need for step-step interactions. A model describing this
is studied numerically by transfer matrix type finite-size-scaling of interface
free energies. Its phase diagram contains a flat, rough, and disordered flat
phase, separated by roughening and preroughening transition lines. Our estimate
for the location of the multicritical point where the preroughening line merges
with the roughening line, predicts that Si and Ge (001) undergo preroughening
induced simultaneous deconstruction transitions.Comment: 13 pages, RevTex, 7 Postscript Figures, submitted to J. Phys.
Coulomb Drag near the metal-insulator transition in two-dimensions
We studied the drag resistivity between dilute two-dimensional hole systems,
near the apparent metal-insulator transition. We find the deviations from the
dependence of the drag to be independent of layer spacing and
correlated with the metalliclike behavior in the single layer resistivity,
suggesting they both arise from the same origin. In addition, layer spacing
dependence measurements suggest that while the screening properties of the
system remain relatively independent of temperature, they weaken significantly
as the carrier density is reduced. Finally, we demonstrate that the drag itself
significantly enhances the metallic dependence in the single layer
resistivity.Comment: 6 pages, 5 figures; revisions to text, to appear in Phys. Rev.
- …
