6,429 research outputs found

    Stationary and dynamical properties of a zero range process on scale-free networks

    Full text link
    We study the condensation phenomenon in a zero range process on scale-free networks. We show that the stationary state property depends only on the degree distribution of underlying networks. The model displays a stationary state phase transition between a condensed phase and an uncondensed phase, and the phase diagram is obtained analytically. As for the dynamical property, we find that the relaxation dynamics depends on the global structure of underlying networks. The relaxation time follows the power law τLz\tau \sim L^z with the network size LL in the condensed phase. The dynamic exponent zz is found to take a different value depending on whether underlying networks have a tree structure or not.Comment: 9 pages, 6 eps figures, accepted version in PR

    An Electronic Mach-Zehnder Quantum Eraser

    Get PDF
    We propose an electronic quantum eraser in which the electrons are injected into a mesoscopic conductor at the quantum Hall regime. The conductor is composed of a two-path interferometer which is an electronic analogue of the optical Mach-Zehnder interferometer, and a quantum point contact detector capacitively coupled to the interferometer. While the interference of the output current at the interferometer is shown to be suppressed by the which-path information, we show that the which-path information is erased by the zero-frequency cross correlation measurement between the interferometer and the detector output leads. We also investigate a modified setup in which the detector is replaced by a two-path interferometer.We show that the path distinguishability and the visibility of the joint detection can be controlled in a continuous manner, and satisfy a complementarity relation for the entangled electrons.Comment: 5 pages, 2 figure

    Counterfactual Quantum Cryptography

    Full text link
    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. This paper shows that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.Comment: 19 pages, 1 figure; a little ambiguity in the version 1 removed; abstract, text, references, and appendix revised; suggestions and comments are highly appreciate

    Direct sampling of the Susskind-Glogower phase distributions

    Full text link
    Coarse-grained phase distributions are introduced that approximate to the Susskind--Glogower cosine and sine phase distributions. The integral relations between the phase distributions and the phase-parametrized field-strength distributions observable in balanced homodyning are derived and the integral kernels are analyzed. It is shown that the phase distributions can be directly sampled from the field-strength distributions which offers the possibility of measuring the Susskind--Glogower cosine and sine phase distributions with sufficiently well accuracy. Numerical simulations are performed to demonstrate the applicability of the method.Comment: 10 figures using a4.st

    Vacuum state truncation via the quantum Zeno effect

    Full text link
    In the context of quantum state engineering we analyze the effect of observation on nonlinear optical nn-photon Fock state generation. We show that it is possible to truncate the vacuum component from an arbitrary photon number superposition without modifying its remaining parts. In the course of the full dynamical analysis of the effect of observation, it is also found that the Zeno and the anti-Zeno effects repeat periodically. We discuss the close relationship between vacuum state truncation and so-called "interaction-free" measurement.Comment: 4 pages, 2 figures, LaTeX; TeX errors fixe

    Preroughening transitions in a model for Si and Ge (001) type crystal surfaces

    Full text link
    The uniaxial structure of Si and Ge (001) facets leads to nontrivial topological properties of steps and hence to interesting equilibrium phase transitions. The disordered flat phase and the preroughening transition can be stabilized without the need for step-step interactions. A model describing this is studied numerically by transfer matrix type finite-size-scaling of interface free energies. Its phase diagram contains a flat, rough, and disordered flat phase, separated by roughening and preroughening transition lines. Our estimate for the location of the multicritical point where the preroughening line merges with the roughening line, predicts that Si and Ge (001) undergo preroughening induced simultaneous deconstruction transitions.Comment: 13 pages, RevTex, 7 Postscript Figures, submitted to J. Phys.

    Coulomb Drag near the metal-insulator transition in two-dimensions

    Full text link
    We studied the drag resistivity between dilute two-dimensional hole systems, near the apparent metal-insulator transition. We find the deviations from the T2T^{2} dependence of the drag to be independent of layer spacing and correlated with the metalliclike behavior in the single layer resistivity, suggesting they both arise from the same origin. In addition, layer spacing dependence measurements suggest that while the screening properties of the system remain relatively independent of temperature, they weaken significantly as the carrier density is reduced. Finally, we demonstrate that the drag itself significantly enhances the metallic TT dependence in the single layer resistivity.Comment: 6 pages, 5 figures; revisions to text, to appear in Phys. Rev.
    corecore