1,451 research outputs found
A study of nuclei of astrophysical interest in the continuum shell model
We present here the first application of realistic shell model (SM) including
coupling between many-particle (quasi-)bound states and the continuum of
one-particle scattering states to the spectroscopy of 8B and to the calculation
of astrophysical factors in the reaction 7Be(p,gamma)8B.Comment: 9 pages incl. 3 figures, LaTeX with iopart class and epsf. Invited
talk at the Int. Workshop on Physics with Radioactive Nuclear Beams, Jan.
12-17, 1998, Puri, India. Shortened version will be published in proceedings
to apear as a separate J. Phys. G volum
Ground-State Electromagnetic Moments of Calcium Isotopes
High-resolution bunched-beam collinear laser spectroscopy was used to measure
the optical hyperfine spectra of the Ca isotopes. The ground state
magnetic moments of Ca and quadrupole moments of Ca were
measured for the first time, and the Ca ground state spin was
determined in a model-independent way. Our results provide a critical test of
modern nuclear theories based on shell-model calculations using
phenomenological as well as microscopic interactions. The results for the
neutron-rich isotopes are in excellent agreement with predictions using
interactions derived from chiral effective field theory including three-nucleon
forces, while lighter isotopes illustrate the presence of particle-hole
excitations of the Ca core in their ground state.Comment: Accepted as a Rapid Communication in Physical Review
Unveiling the intruder deformed 0 state in Si
The 0 state in Si has been populated at the {\sc Ganil/Lise3}
facility through the -decay of a newly discovered 1 isomer in
Al of 26(1) ms half-life. The simultaneous detection of pairs
allowed the determination of the excitation energy E(0)=2719(3) keV and
the half-life T=19.4(7) ns, from which an electric monopole strength of
(E0)=13.0(0.9) was deduced. The 2 state is
observed to decay both to the 0 ground state and to the newly observed
0 state (via a 607(2) keV transition) with a ratio
R(2)=1380(717). Gathering all
information, a weak mixing with the 0 and a large deformation parameter
of =0.29(4) are found for the 0 state, in good agreement with
shell model calculations using a new {\sc sdpf-u-mix} interaction allowing
\textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
How magic is the magic 68Ni nucleus?
We calculate the B(E2) strength in 68Ni and other nickel isotopes using
several theoretical approaches. We find that in 68Ni the gamma transition to
the first 2+ state exhausts only a fraction of the total B(E2) strength, which
is mainly collected in excited states around 5 MeV. This effect is sensitive to
the energy splitting between the fp shell and the g_{9/2}orbital. We argue that
the small experimental B(E2) value is not strong evidence for the double-magic
character of 68Ni.Comment: 4 pages, 4 figure
Canonical form of Hamiltonian matrices
On the basis of shell model simulations, it is conjectured that the Lanczos
construction at fixed quantum numbers defines---within fluctuations and
behaviour very near the origin---smooth canonical matrices whose forms depend
on the rank of the Hamiltonian, dimensionality of the vector space, and second
and third moments. A framework emerges that amounts to a general Anderson model
capable of dealing with ground state properties and strength functions. The
smooth forms imply binomial level densities. A simplified approach to canonical
thermodynamics is proposed.Comment: 4 pages 6 figure
Shell Model Study of the Double Beta Decays of Ge, Se and Xe
The lifetimes for the double beta decays of Ge, Se and
Xe are calculated using very large shell model spaces. The two neutrino
matrix elements obtained are in good agreement with the present experimental
data. For eV we predict the following upper bounds to the
half-lives for the neutrinoless mode: , and . These results are the first from a new generation of Shell
Model calculations reaching O(10) dimensions
Energy efficiency parametric design tool in the framework of holistic ship design optimization
Recent International Maritime Organization (IMO) decisions with respect to measures to reduce the emissions from maritime greenhouse gases (GHGs) suggest that the collaboration of all major stakeholders of shipbuilding and ship operations is required to address this complex techno-economical and highly political problem efficiently. This calls eventually for the development of proper design, operational knowledge, and assessment tools for the energy-efficient design and operation of ships, as suggested by the Second IMO GHG Study (2009). This type of coordination of the efforts of many maritime stakeholders, with often conflicting professional interests but ultimately commonly aiming at optimal ship design and operation solutions, has been addressed within a methodology developed in the EU-funded Logistics-Based (LOGBASED) Design Project (2004–2007). Based on the knowledge base developed within this project, a new parametric design software tool (PDT) has been developed by the National Technical University of Athens, Ship Design Laboratory (NTUA-SDL), for implementing an energy efficiency design and management procedure. The PDT is an integral part of an earlier developed holistic ship design optimization approach by NTUA-SDL that addresses the multi-objective ship design optimization problem. It provides Pareto-optimum solutions and a complete mapping of the design space in a comprehensive way for the final assessment and decision by all the involved stakeholders. The application of the tool to the design of a large oil tanker and alternatively to container ships is elaborated in the presented paper
Resistance and resilience of social–ecological systems to recurrent typhoon disturbance on a subtropical island: Taiwan
Tropical cyclones (TCs) have major effects on ecological and social systems. However, studies integrating the effects of TCs on both social and ecological systems are rare, especially in the northwest Pacific, where the frequency of TCs (locally named typhoons) is the highest in the world. We synthesized studies of effects of recurrent typhoons on social and ecological systems in Taiwan over the last several decades. Many responses to TCs are comparable between social and ecological systems. High forest ecosystem resistance, evident from tree mortality below 2% even following multiple strong typhoons, is comparable with resistance of social systems, including the only 4% destruction of river embankments following a typhoon that brought nearly 3000 mm rainfall in three days. High resilience as reflected by quick returns of leaf area index, mostly in one year, and streamwater chemistry, one to several weeks to pre‐typhoon levels of ecosystems, are comparable to quick repair of the power grid within one to several days and returns of vegetable price within several weeks to pre‐typhoon levels of the social systems. Landslides associated with intense typhoons have buried mountain villages and transported large quantities of woody debris to the coast, affecting the coastal plains and reefs, illustrating a ridge‐to‐reef link between ecological and societal systems. Metrics of both social and ecological function showed large fluctuations in response to typhoons but quickly returned to pre‐disturbance levels, except when multiple intense typhoons occurred within a single season. Our synthesis illustrates that the social–ecological systems in Taiwan are highly dynamic and responsive to frequent typhoon disturbance, with extraordinarily high resistance and resilience. For ecosystems, the efficient responsiveness results from the selective force of TCs on ecosystem structure and processes. For social systems, it is the result of the effects of TCs on planning and decision making by individuals (e.g., farmers), management sectors, and ultimately the government. In regions with frequent TCs, the social–ecological systems are inevitably highly dynamic and rapid responses are fundamental to system resistance and resilience which in turn is key to maintaining structure and function of the social–ecological systems
Shell Model Study of the Neutron-Rich Nuclei around N=28
We describe the properties of the neutron rich nuclei around N=28 in the
shell mode framework. The valence space comprises the shell for protons an
the shell for neutrons without any restriction. Good agreement is found
with the available experimental data. The N=28 shell closure, even if eroded
due to the large neutron excess, persists. The calculations predict that
S and S are deformed with and
respectively.Comment: 17 pages and 19 figures, LateX, RevTe
Prolate-Spherical Shape Coexistence at N=28 in S
The structure of S has been studied using delayed and
electron spectroscopy at \textsc{ganil}. The decay rates of the 0
isomeric state to the 2 and 0 states have been measured for the
first time, leading to a reduced transition probability
B(E2~:~20= 8.4(26)~efm and a monopole
strength (E0~:~00
=~8.7(7)10. Comparisons to shell model calculations point
towards prolate-spherical shape coexistence and a phenomenological two level
mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
- …
