1,027 research outputs found
The -cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering
We discuss a small-scale experiment, called -cleus, for the first
detection of coherent neutrino-nucleus scattering by probing nuclear-recoil
energies down to the 10 eV-regime. The detector consists of low-threshold
CaWO and AlO calorimeter arrays with a total mass of about 10 g and
several cryogenic veto detectors operated at millikelvin temperatures.
Realizing a fiducial volume and a multi-element target, the detector enables
active discrimination of , neutron and surface backgrounds. A first
prototype AlO device, operated above ground in a setup without
shielding, has achieved an energy threshold of eV and further
improvements are in reach. A sensitivity study for the detection of coherent
neutrino scattering at nuclear power plants shows a unique discovery potential
(5) within a measuring time of weeks. Furthermore, a site
at a thermal research reactor and the use of a radioactive neutrino source are
investigated. With this technology, real-time monitoring of nuclear power
plants is feasible.Comment: 14 pages, 19 figure
Gram-scale cryogenic calorimeters for rare-event searches
The energy threshold of a cryogenic calorimeter can be lowered by reducing
its size. This is of importance since the resulting increase in signal rate
enables new approaches in rare-event searches, including the detection of MeV
mass dark matter and coherent scattering of reactor or solar neutrinos. A
scaling law for energy threshold vs. detector size is given. We analyze the
possibility of lowering the threshold of a gram-scale cryogenic calorimeter to
the few eV regime. A prototype 0.5 g AlO device achieved an energy
threshold of () eV, the lowest value reported for a macroscopic
calorimeter.Comment: 7 pages, 8 figure
A test of interference versus decay in working memory:Varying distraction within lists in a complex span task
The General Theory of Quantum Field Mixing
We present a general theory of mixing for an arbitrary number of fields with
integer or half-integer spin. The time dynamics of the interacting fields is
solved and the Fock space for interacting fields is explicitly constructed. The
unitary inequivalence of the Fock space of base (unmixed) eigenstates and the
physical mixed eigenstates is shown by a straightforward algebraic method for
any number of flavors in boson or fermion statistics. The oscillation formulas
based on the nonperturbative vacuum are derived in a unified general
formulation and then applied to both two and three flavor cases. Especially,
the mixing of spin-1 (vector) mesons and the CKM mixing phenomena in the
Standard Model are discussed emphasizing the nonperturbative vacuum effect in
quantum field theory
10,000 Standard Solar Models: a Monte Carlo Simulation
We have evolved 10,000 solar models using 21 input parameters that are
randomly drawn for each model from separate probability distributions for every
parameter. We use the results of these models to determine the theoretical
uncertainties in the predicted surface helium abundance, the profile of the
sound speed versus radius, the profile of the density versus radius, the depth
of the solar convective zone, the eight principal solar neutrino fluxes, and
the fractions of nuclear reactions that occur in the CNO cycle or in the three
branches of the p-p chains. We also determine the correlation coefficients of
the neutrino fluxes for use in analysis of solar neutrino oscillations. Our
calculations include the most accurate available input parameters, including
radiative opacity, equation of state, and nuclear cross sections. We
incorporate both the recently determined heavy element abundances recommended
by Asplund, Grevesse & Sauval (2005) and the older (higher) heavy element
abundances recommended by Grevesse & Sauval (1998). We present best-estimates
of many characteristics of the standard solar model for both sets of
recommended heavy element compositions.Comment: ** John N. Bahcall passed away on August 17, 2005. Manuscript has 60
pages including 10 figure
A test of interference versus decay in working memory:Varying distraction within lists in a complex span task
We tested two competing explanations of the effect of processing on working memory. According to decay models, memory representations decay during processing and can be rehearsed or refreshed in the free time between processing steps. Alternatively, one interference-based model assumes that processing involves encoding of distractor representations in working memory, and free time is used to remove distractors. In several experiments the demand from distractor processing was varied within lists, such that one burst of processing following an item on the list was either particularly demanding or particularly undemanding. The exceptional distractor burst had its greatest effect on the list item that immediately preceded it (a local effect), and it affected items that had not yet been presented as well as preceding items. Both findings are predicted by a computational interference model of working memory, and together are problematic for the viewpoint that refreshing offsets decay.</p
Solar and Atmospheric Neutrinos: Background Sources for the Direct Dark Matter Searches
In experiments for direct dark matter searches, neutrinos coherently
scattering off nuclei can produce similar events as Weakly Interacting Massive
Particles (WIMPs). The calculated count rate for solar neutrinos in such
experiments is a few events per ton-year. This count rate strongly depends on
the nuclear recoil energy threshold achieved in the experiments for the WIMP
search. We show that solar neutrinos can be a serious background source for
direct dark matter search experiments using Ge, Ar, Xe and CaWO_4 as target
materials. To reach sensitivities better than approximatly 10^-10 pb for the
elastic WIMP nucleon spin-independent cross section in the zero-background
limit, energy thresholds for nuclear recoils should be approximatly >2.05 keV
for CaWO_4, >4.91 keV for Ge, >2.89 keV for Xe, and >8.62 keV for Ar as target
material. Next-generation experiments should not only strive for a reduction of
the present energy thresholds but mainly focus on an increase of the target
mass. Atmospheric neutrinos limit the achievable sensitivity for the
background-free direct dark matter search to approximatly >10^-12 pb.Comment: accepted by Astroparticle Physic
- …
