419 research outputs found

    Short Gamma-Ray Bursts from Binary Neutron Star Mergers

    Get PDF
    We present the results from new relativistic hydrodynamic simulations of binary neutron star mergers using realistic non-zero temperature equations of state. We vary several unknown parameters in the system such as the neutron star (NS) masses, their spins and the nuclear equation of state. The results are then investigated with special focus on the post-merger torus-remnant system. Observational implications on the Gamma-ray burst (GRB) energetics are discussed and compared with recent observations

    Testing Approximations of Thermal Effects in Neutron Star Merger Simulations

    Full text link
    We perform three-dimensional relativistic hydrodynamical calculations of neutron star mergers to assess the reliability of an approximate treatment of thermal effects in such simulations by combining an ideal-gas component with zero-temperature, micro-physical equations of state. To this end we compare the results of simulations that make this approximation to the outcome of models with a consistent treatment of thermal effects in the equation of state. In particular we focus on the implications for observable consequences of merger events like the gravitational-wave signal. It is found that the characteristic gravitational-wave oscillation frequencies of the post-merger remnant differ by about 50 to 250 Hz (corresponding to frequency shifts of 2 to 8 per cent) depending on the equation of state and the choice of the characteristic index of the ideal-gas component. In addition, the delay time to black hole collapse of the merger remnant as well as the amount of matter remaining outside the black hole after its formation are sensitive to the description of thermal effects.Comment: 10 pages, 6 figures, 9 eps files; revised with minor additions due to referee comments; accepted by Phys.Rev.

    Dynamical non-axisymmetric instabilities in rotating relativistic stars

    Full text link
    We present new results on dynamical instabilities in rapidly rotating neutron-stars. In particular, using numerical simulations in full General Relativity, we analyse the effects that the stellar compactness has on the threshold for the onset of the dynamical bar-mode instability, as well as on the appearance of other dynamical instabilities. By using an extrapolation technique developed and tested in our previous study [1], we explicitly determine the threshold for a wide range of compactnesses using four sequences of models of constant baryonic mass comprising a total of 59 stellar models. Our calculation of the threshold is in good agreement with the Newtonian prediction and improves the previous post-Newtonian estimates. In addition, we find that for stars with sufficiently large mass and compactness, the m=3 deformation is the fastest growing one. For all of the models considered, the non-axisymmetric instability is suppressed on a dynamical timescale with an m=1 deformation dominating the final stages of the instability. These results, together with those presented in [1], suggest that an m=1 deformation represents a general and late-time feature of non-axisymmetric dynamical instabilities both in full General Relativity and in Newtonian gravity.Comment: To appear on CQG, NFNR special issue. 16 pages, 5 color figures, movies from http://www.fis.unipr.it/numrel/BarMode/ResearchBarMode.htm

    Relativistic neutron star merger simulations with non-zero temperature equations of state I. Variation of binary parameters and equation of state

    Get PDF
    An extended set of binary neutron star (NS) merger simulations is performed with an approximative conformally flat treatment of general relativity to systematically investigate the influence of the nuclear equation of state (EoS), the neutron star masses, and the NS spin states prior to merging. We employ the two non-zero temperature EoSs of Shen et al. (1998a,b) and Lattimer & Swesty (1991). In addition, we use the cold EoS of Akmal et al. (1998) with a simple ideal-gas-like extension according to Shibata & Taniguchi (2006), and an ideal-gas EoS with parameters fitted to the supernuclear part of the Shen-EoS. We estimate the mass sitting in a dilute high-angular momentum ``torus'' around the future black hole (BH). The dynamics and outcome of the models is found to depend strongly on the EoS and on the binary parameters. Larger torus masses are found for asymmetric systems (up to ~0.3 M_sun for a mass ratio of 0.55), for large initial NSs, and for a NS spin state which corresponds to a larger total angular momentum. We find that the postmerger remnant collapses either immediately or after a short time when employing the soft EoS of Lattimer& Swesty, whereas no sign of post-merging collapse is found within tens of dynamical timescales for all other EoSs used. The typical temperatures in the torus are found to be about 3-10 MeV depending on the strength of the shear motion at the collision interface between the NSs and thus depending on the initial NS spins. About 10^{-3}-10^{-2} M_sun of NS matter become gravitationally unbound during or right after the merging process. This matter consists of a hot/high-entropy component from the collision interface and (only in case of asymmetric systems) of a cool/low-entropy component from the spiral arm tips. (abridged)Comment: 20 pages, 15 figures, accepted for publication in A&A, included changes based on referee comment

    The influence of quark matter at high densities on binary neutron star mergers

    Get PDF
    We consider the influence of potential quark matter existing at high densities in neutron star (NS) interiors on gravitational waves (GWs) emitted in a binary NS merger event. Two types of equations of state (EoSs) at zero temperature are used - one describing pure nuclear matter and the other nuclear matter with a phase transition to quark matter at very high densities. Binary equilibrium sequences close to the innermost stable circular orbit (ISCO) are calculated to determine the GW frequencies just before the merger. It is found that the effects of the EoSs begin to play a role when gravitational masses are larger than M∞≃ 1.5 M⊙. The difference in the GW frequency at the ISCO increases by up to ≃10 per cent for the maximum mass permitted by the EoSs. We then perform three-dimensional hydrodynamic simulations for each EoS while varying the initial mass and determine the characteristic GW frequencies of the merger remnant. The implications of the presence of quark matter show up mainly in the collapse behaviour of the merger remnant. If the collapse does not take place immediately after the merger, we find a phase difference between the two EoSs in the post-merger GW signal. We also compare the GW frequencies emitted by the remnant of the merger to values obtained from simulations using a polytropic EoS and find an imprint of the non-constant adiabatic index of our EoSs. All calculations are based on the conformally flat approximation to general relativity and the GW signal from the merger simulation is extracted up to quadrupole orde

    Post Newtonian SPH

    Get PDF
    We introduce an adaptation of the well known Tree+SPH numerical scheme to Post Newtonian (PN) hydrodynamics and gravity. Our code solves the (0+1+2.5)PN equations. These equations include Newtonian hydrodynamics and gravity (0PN), the first order relativistic corrections to those (1PN) and the lowest order gravitational radiation terms (2.5PN). We test various aspects of our code using analytically solvable test problems. We then proceed to study the 1PN effects on binary neutron star coalescence by comparing calculations with and without the 1PN terms. We find that the effect of the 1PN terms is rather small. The largest effect arises with a stiff equation of state for which the maximum rest mass density increases. This could induce black hole formation. The gravitational wave luminosity is also affected.Comment: 28 pages, 13 figures, revised version published in Ap

    Strangeness in Astrophysics and Cosmology

    Full text link
    Some recent developments concerning the role of strange quark matter for astrophysical systems and the QCD phase transition in the early universe are addressed. Causality constraints of the soft nuclear equation of state as extracted from subthreshold kaon production in heavy-ion collisions are used to derive an upper mass limit for compact stars. The interplay between the viscosity of strange quark matter and the gravitational wave emission from rotation-powered pulsars are outlined. The flux of strange quark matter nuggets in cosmic rays is put in perspective with a detailed numerical investigation of the merger of two strange stars. Finally, we discuss a novel scenario for the QCD phase transition in the early universe, which allows for a small inflationary period due to a pronounced first order phase transition at large baryochemical potential.Comment: 8 pages, invited talk given at the International Conference on Strangeness in Quark Matter (SQM2009), Buzios, Brasil, September 28 - October 2, 200

    Quark Matter in Neutron Star Mergers

    Get PDF
    Binary neutron star mergers are expected to be one of the most promising source of gravitational waves (GW) for the network of laser interferometric and bar detectors becoming operational in the next few years. The merger wave signal is expected to be sensitive to the interior structure of the neutron star (NS). The structure of high density phases of matter is under current experimental investigation in heavy-ion collisions. We investigate the dependence of the merger process and its GW signal on the presence of quarks in these phases by performing numerical simulations, where the smoothed particle hydrodynamics (SPH) method and the conformally flat approximation for the 3-geometry in general relativistic gravity are implemented.Comment: 4 Pages, 4 Figures, Proc. Nuclei in the Cosmos 7, 200

    Left ventricular non-compaction: clinical features and cardiovascular magnetic resonance imaging

    Get PDF
    Background: It is apparent that despite lack of family history, patients with the morphological characteristics of left ventricular non-compaction develop arrhythmias, thrombo-embolism and left ventricular dysfunction. METHODS: Forty two patients, aged 48.7 +/- 2.3 yrs (mean +/- SEM) underwent cardiovascular magnetic resonance (CMR) for the quantification of left ventricular volumes and extent of non-compacted (NC) myocardium. The latter was quantified using planimetry on the two-chamber long axis LV view (NC area). The patients included those referred specifically for CMR to investigate suspected cardiomyopathy, and as such is represents a selected group of patients. RESULTS: At presentation, 50% had dyspnoea, 19% chest pain, 14% palpitations and 5% stroke. Pulmonary embolism had occurred in 7% and brachial artery embolism in 2%. The ECG was abnormal in 81% and atrial fibrillation occurred in 29%. Transthoracic echocardiograms showed features of NC in only 10%. On CMR, patients who presented with dyspnoea had greater left ventricular volumes (both p < 0.0001) and a lower left ventricular ejection fraction (LVEF) (p < 0.0001) than age-matched, healthy controls. In patients without dyspnoea (n = 21), NC area correlated positively with end-diastolic volume (r = 0.52, p = 0.0184) and end-systolic volume (r = 0.56, p = 0.0095), and negatively with EF (r = -0.72, p = 0.0001). CONCLUSION: Left ventricular non-compaction is associated with dysrrhythmias, thromboembolic events, chest pain and LV dysfunction. The inverse correlation between NC area and EF suggests that NC contributes to left ventricular dysfunction

    Merger of binary neutron stars of unequal mass in full general relativity

    Full text link
    We present results of three dimensional numerical simulations of the merger of unequal-mass binary neutron stars in full general relativity. A Γ\Gamma-law equation of state P=(Γ1)ρϵP=(\Gamma-1)\rho\epsilon is adopted, where PP, ρ\rho, \varep, and Γ\Gamma are the pressure, rest mass density, specific internal energy, and the adiabatic constant, respectively. We take Γ=2\Gamma=2 and the baryon rest-mass ratio QMQ_M to be in the range 0.85--1. The typical grid size is (633,633,317)(633,633,317) for (x,y,z)(x,y,z) . We improve several implementations since the latest work. In the present code, the radiation reaction of gravitational waves is taken into account with a good accuracy. This fact enables us to follow the coalescence all the way from the late inspiral phase through the merger phase for which the transition is triggered by the radiation reaction. It is found that if the total rest-mass of the system is more than 1.7\sim 1.7 times of the maximum allowed rest-mass of spherical neutron stars, a black hole is formed after the merger irrespective of the mass ratios. The gravitational waveforms and outcomes in the merger of unequal-mass binaries are compared with those in equal-mass binaries. It is found that the disk mass around the so formed black holes increases with decreasing rest-mass ratios and decreases with increasing compactness of neutron stars. The merger process and the gravitational waveforms also depend strongly on the rest-mass ratios even for the range QM=0.85Q_M= 0.85--1.Comment: 32 pages, PRD68 to be publishe
    corecore