5,244 research outputs found

    Primordial magnetic field and non-Gaussianity of the 1-year Wilkinson Microwave Anisotropy Probe (WMAP) data

    Full text link
    Alfven turbulence caused by statistically isotropic and homogeneous primordial magnetic field induces correlations in the cosmic microwave background anisotropies. The correlations are specifically between spherical harmonic modes a_{l-1,m} and a_{l+1,m}. In this paper we approach this issue from phase analysis of the CMB maps derived from the WMAP data sets. Using circular statistics and return phase mapping we examine phase correlation of \Delta l=2 for the primordial non-Gaussianity caused by the Alfven turbulence at the epoch of recombination. Our analyses show that such specific features from the power-law Alfven turbulence do not contribute significantly in the phases of the maps and could not be a source of primordial non-Gaussianity of the CMB.Comment: 8 pages, 7 figures, ApJ accepted with minor changes and the explanation on the whitened derived CMB map

    Fermion Density Induced Instability of the W-Boson Pair Condensate in Strong Magnetic Field

    Full text link
    The electroweak vacuum structure in an external magnetic field close to the lower critical value is considered at finite fermion density. It is shown that the leading effect of the fermions is to reduce the symmetry of the W-pair condensate in the direction of the magnetic field. The energy is minimized by the appearance of a helicoidal structure of the condensate along the magnetic field.Comment: 9 pages, LaTex, JHU-TIPAC-93000

    Effects of organic matter input on soil microbial properties and crop yields in conventional and organic cropping systems

    Get PDF
    Unlike conventional cropping systems, which are characterised by targeted short-term fertility management, organic farming systems depend on long-term increase in soil fertility and promotion of soil biodiversity. This study sought to investigate long-term effects of organic matter inputs on various cropping systems in a 10-year-old experiment. Results show that in the long-term high C and N inputs enhance microbial activity. Microbial biomass N and the potential nitrification rate were higher in cropping systems based on green manure than in those reliant on inputs from animal manure and mineral fertilizer. Soil microbiological properties were affected by the individual crops in the rotation. The high microbial activity with increased organic matter inputs did not transform to enhanced crop productivity

    Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology

    Get PDF
    植物を支える「共生ネットワーク」は地上と地下で構造が違う --見えてきた地下生物圏の構造--. 京都大学プレスリリース. 2015-10-26.In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions

    Critical Boundary Conditions for the Effective String

    Full text link
    Gauge systems in the confining phase induce constraints at the boundaries of the effective string, which rule out the ordinary bosonic string even with short distance modifications. Allowing topological excitations, corresponding to winding around the colour flux tube, produces at the quantum level a universal free fermion string with a boundary phase nu=1/4. This coincides with a model proposed some time ago in order to fit Monte Carlo data of 3D and 4D Lattice gauge systems better. A universal value of the thickness of the colour flux tube is predicted.Comment: 9 pages + 1 figur

    Evolution of FLRW spacetime after the birth of a cosmic string

    Full text link
    We consider the evolution of an initially FLRW universe after the formation of a long, straight, cosmic string with arbitrary tension and mass per unit length. The birth of the string sources scalar and tensor-type perturbations in the background metric and both density and velocity perturbations in the background fluid, which compensate for the string mass and maintain energy conservation. The former generate the deficit angle within the light cone of the string and a gravitational shock front at the cosmological horizon, whereas the latter are confined within the sound cone. We study the properties of the metric within each region of the resulting spacetime and give the explicit coordinate transformations which demonstrate non-violation of causality. This paper generalizes the work of previous studies for the Nambu-Goto string.Comment: 16 pages, 2 figures, published versio

    Tensile testing of cellulose based natural fibers for structural composite applications

    Get PDF
    A series of tensile tests were conducted on a Lloyd LRX tensile testing machine for numerous natural fibers deemed potential candidates for development in composite applications. The tensile tests were conducted on the fibers jute, kenaf, flax, abaca, sisal, hemp, and coir for samples exposed to moisture conditions of (1) room temperature and humidity, (2) 65% moisture content, (3) 90% moisture content, and (4) soaked fiber. These seven fibers were then tested for the four conditions and the mechanical properties of tensile strength, tensile strain to failure, and Young's modulus were calculated for the results. These results were then compared and verified with those from the literature, with some of the fibers showing distinctly promising potential. Additionally, a study on the effect of alkalization using 3% NaOH solution was carried out on flax, kenaf, abaca, and sisal to observe impact that this common fiber pre-treatment process has on fiber mechanical properties. The result of the investigation indicated that over treatment of natural fibers using NaOH could have a negative effect on the base fiber properties. It is consequently apparent that a treatment time of less than 10 min is sufficient to remove hemicelluloses and to give the optimum effect
    corecore