128 research outputs found
Different origin of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N
The mechanism for the ferromagnetic order of (Ga,Mn)As and (Ga,Mn)N is
extensively studied over a vast range of Mn concentrations. We calculate the
electronic structures of these materials using density functional theory in
both the local spin density approximation and the LDA+U scheme, that we have
now implemented in the code SIESTA.
For (Ga,Mn)As, the LDA+U approach leads to a hole mediated picture of the
ferromagnetism, with an exchange constant =~ -2.8 eV. This is smaller
than that obtained with LSDA, which overestimates the exchange coupling between
Mn ions and the As holes.
In contrast, the ferromagnetism in wurtzite (Ga,Mn)N is caused by the
double-exchange mechanism, since a hole of strong character is found at the
Fermi level in both the LSDA and the LDA+U approaches. In this case the
coupling between the Mn ions decays rapidly with the Mn-Mn separation. This
suggests a two phases picture of the ferromagnetic order in (Ga,Mn)N, with a
robust ferromagnetic phase at large Mn concentration coexisting with a diluted
weak ferromagnetic phase.Comment: 12 pages, 11 figure
Optical properties of metallic (III,Mn)V ferromagnetic semiconductors in the infrared to visible range
We report on a study of the ac conductivity and magneto-optical properties of
metallic ferromagnetic (III,Mn)V semiconductors in the infrared to visible
spectrum. Our analysis is based on the successful kinetic exchange model for
(III,Mn)V ferromagnetic semiconductors. We perform the calculations within the
Kubo formalism and treat the disorder effects pertubatively within the Born
approximation, valid for the metallic regime. We consider an eight-band
Kohn-Luttinger model (six valence bands plus two conduction bands) as well as a
ten-band model with additional dispersionless bands simulating
phenomenologically the upper-mid-gap states induced by antisite and
interstitial impurities. These models qualitatively account for
optical-absorption experiments and predict new features in the mid-infrared
Kerr angle and magnetic-circular-dichroism properties as a function of Mn
concentration and free carrier density.Comment: 10 pages, 7 figures, some typos correcte
Five Intermediate-Period Planets from the N2K Sample
We report the detection of five Jovian mass planets orbiting high metallicity
stars. Four of these stars were first observed as part of the N2K program and
exhibited low RMS velocity scatter after three consecutive observations.
However, follow-up observations over the last three years now reveal the
presence of longer period planets with orbital periods ranging from 21 days to
a few years. HD 11506 is a G0V star with a planet of \msini = 4.74 \mjup in a
3.85 year orbit. HD 17156 is a G0V star with a 3.12 \mjup planet in a 21.2 day
orbit. The eccentricity of this orbit is 0.67, one of the highest known for a
planet with a relatively short period. The orbital period for this planet
places it in a region of parameter space where relatively few planets have been
detected. HD 125612 is a G3V star with a planet of \msini = 3.5 \mjup in a 1.4
year orbit. HD 170469 is a G5IV star with a planet of \msini = 0.67 \mjup in a
3.13 year orbit. HD 231701 is an F8V star with planet of 1.08 \mjup in a 142
day orbit. All of these stars have supersolar metallicity. Three of the five
stars were observed photometrically but showed no evidence of brightness
variability. A transit search conducted for HD 17156 was negative but covered
only 25% of the search space and so is not conclusive.Comment: 13 pages, 9 figures, accepted ApJ Resubmitted here with some
additional data, modified Keplerian orbit
Prospects of high temperature ferromagnetism in (Ga,Mn)As semiconductors
We report on a comprehensive combined experimental and theoretical study of
Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors. Broad
agreement between theoretical expectations and measured data allows us to
conclude that T_c in high-quality metallic samples increases linearly with the
number of uncompensated local moments on Mn_Ga acceptors, with no sign of
saturation. Room temperature ferromagnetism is expected for a 10% concentration
of these local moments. Our magnetotransport and magnetization data are
consistnent with the picture in which Mn impurities incorporated during growth
at interstitial Mn_I positions act as double-donors and compensate neighboring
Mn_Ga local moments because of strong near-neighbor Mn_Ga-Mn_I
antiferromagnetic coupling. These defects can be efficiently removed by
post-growth annealing. Our analysis suggests that there is no fundamental
obstacle to substitutional Mn_Ga doping in high-quality materials beyond our
current maximum level of 6.2%, although this achievement will require further
advances in growth condition control. Modest charge compensation does not limit
the maximum Curie temperature possible in ferromagnetic semiconductors based on
(Ga,Mn)As.Comment: 13 pages, 12 figures, submitted to Phys. Rev.
A theory of ferromagnetism in planar heterostructures of (Mn,III)-V semiconductors
A density functional theory of ferromagnetism in heterostructures of compound
semiconductors doped with magnetic impurities is presented. The variable
functions in the density functional theory are the charge and spin densities of
the itinerant carriers and the charge and localized spins of the impurities.
The theory is applied to study the Curie temperature of planar heterostructures
of III-V semiconductors doped with manganese atoms. The mean-field,
virtual-crystal and effective-mass approximations are adopted to calculate the
electronic structure, including the spin-orbit interaction, and the magnetic
susceptibilities, leading to the Curie temperature. By means of these results,
we attempt to understand the observed dependence of the Curie temperature of
planar -doped ferromagnetic structures on variation of their
properties. We predict a large increase of the Curie Temperature by additional
confinement of the holes in a -doped layer of Mn by a quantum well.Comment: 8 pages, 7 figure
First principles study of the origin and nature of ferromagnetism in (Ga,Mn)As
The properties of diluted GaMnAs are calculated for a wide range
of Mn concentrations within the local spin density approximation of density
functional theory. M\"ulliken population analyses and orbital-resolved
densities of states show that the configuration of Mn in GaAs is compatible
with either 3d or 3d, however the occupation is not integer due to the
large - hybridization between the Mn states and the valence band of
GaAs. The spin splitting of the conduction band of GaAs has a mean field-like
linear variation with the Mn concentration and indicates ferromagnetic coupling
with the Mn ions. In contrast the valence band is antiferromagnetically coupled
with the Mn impurities and the spin splitting is not linearly dependent on the
Mn concentration. This suggests that the mean field approximation breaks down
in the case of Mn-doped GaAs and corrections due to multiple scattering must be
considered. We calculate these corrections within a simple free electron model
and find good agreement with our {\it ab initio} results if a large exchange
constant (eV) is assumed.Comment: 15 pages, 14 figure
Ferromagnetic GaMnAs/GaAs superlattices - MBE growth and magnetic properties
We have studied the magnetic properties of (GaMnAs)m/(GaAs)n superlattices
with magnetic GaMnAs layers of thickness between 8 and 16 molecular layers (ML)
(23-45 \AA), and with nonmagnetic GaAs spacers from 4 ML to 10 ML (11-28 \AA).
While previous reports state that GaMnAs layers thinner than 50 \AA are
paramagnetic in the whole Mn composition range achievable using MBE growth (up
to 8% Mn), we have found that short period superlattices exhibit a
paramagnetic-to-ferromagnetic phase transition with a transition temperature
which depends on both the thickness of the magnetic GaMnAs layer and the
nonmagnetic GaAs spacer. The neutron scattering experiments have shown that the
magnetic layers in superlattices are ferromagnetically coupled for both thin
(below 50 \AA) and thick (above 50 \AA) GaMnAs layers.Comment: Proceedings of 4th International Workshop on Molecular Beam Epitaxy
and Vapour Phase Epitaxy Growth Physics and Technology, September 23 - 28
(2001), Warszawa, Poland, to appear in Thin Solid Films. 24 pages, 8 figure
Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen
PURPOSE:
The product of the carcinoembryonic antigen (CEA) gene is an attractive candidate for T-cell-based immunotherapy because it is frequently expressed in epithelial solid carcinomas. Although many CEA peptide epitopes capable of stimulating CTLs have been identified, no MHC class II-restricted T helper epitope has yet been reported. Experimental Design: The amino acid sequence of CEA was examined for the presence of potential T helper epitopes, and candidate peptides were used to stimulate in vitro T-cell responses.
RESULTS:
We describe here that using an algorithm to identify promiscuous helper T-cell epitopes, a peptide of CEA occupying residue positions 653 to 667 (CEA(653-667)), was effective in inducing in vitro T helper responses in the context of the HLA-DR4, HLA-DR7, and HLA-DR 9 alleles. Most significantly, some of the peptide-reactive helper T lymphocytes were also capable of recognizing naturally processed antigen in the form of recombinant CEA protein or cell lysates from tumors that express CEA. Interestingly, the newly identified helper T-cell epitope was found to overlap with a previously described HLA-A24-restricted CTL epitope, CEA(652-660), which could facilitate the development of a therapeutic vaccine capable of eliciting both CTL and T helper responses in patients suffering from epithelial carcinomas.
CONCLUSION:
These results indicate that T helper lymphocytes are capable of recognizing CEA as a tumor antigen and that epitope CEA(653-667) could be used for immunotherapy against tumors expressing CEA
Monte Carlo simulations of an impurity band model for III-V diluted magnetic semiconductors
We report the results of a Monte Carlo study of a model of (III,Mn)V diluted
magnetic semiconductors which uses an impurity band description of carriers
coupled to localized Mn spins and is applicable for carrier densities below and
around the metal-insulator transition. In agreement with mean field studies, we
find a transition to a ferromagnetic phase at low temperatures. We compare our
results for the magnetic properties with the mean field approximation, as well
as with experiments, and find favorable qualitative agreement with the latter.
The local Mn magnetization below the Curie temperature is found to be spatially
inhomogeneous, and strongly correlated with the local carrier charge density at
the Mn sites. The model contains fermions and classical spins and hence we
introduce a perturbative Monte Carlo scheme to increase the speed of our
simulations.Comment: 17 pages, 24 figures, 2 table
- …
