1,111 research outputs found
Experimental investigation of stability and stall flutter of a free-floating wing V/STOL model
An experimental investigation was made of the static and dynamic stability characteristics of a one-fourth scale model of a tilt-propeller free-wing V/STOL aircraft. The effects of wing pivot location, wing chord, trailing-edge angle, propeller tilt angle, and thrust were studied, and a limited evaluation was made of high-lift devices. A dynamically similar wing was used to measure frequency and damping ratio from transient response data in the linear aerodynamic regime and the results were compared to quasi-steady and unsteady aerodynamic theory. It was found that at high trim angles of attack, in the nonlinear aerodynamic regime, stall flutter oscillations occurred with typical amplitudes ranging from 15 to 20 deg. Wing control tab deflection was effective in initiating and terminating stall flutter but variations in configuration or operating conditions did not greatly influence the occurrence of characteristics of the oscillations
Development of an external ceramic insulation for the space shuttle orbiter. Part 3: Development of stabilized aluminum phosphate fibers
The development of reusable surface insulation materials that are thermal shock resistant and highly refractory is discussed. A stabilized, high-cristobalite, aluminum orthophosphate fiber was developed and found to possess the desired qualities. The application of such a material to heat shielding for space shuttles is examined
On the nonlinear deformation geometry of Euler-Bernoulli beams
Nonlinear expressions are developed to relate the orientation of the deformed beam cross section, torsion, local components of bending curvature, angular velocity, and virtual rotation to deformation variables. The deformed beam kinematic quantities are proven to be equivalent to those derived from various rotation sequences by identifying appropriate changes of variable based on fundamental uniqueness properties of the deformed beam geometry. The torsion variable used is shown to be mathematically analogous to an axial deflection variable commonly used in the literature. Rigorous applicability of Hamilton's principle to systems described by a class of quasi-coordinates that includes these variables is formally established
Hingeless helicopter rotor with improved stability
Improved stability was provided in a hingeless helicopter rotor by inclining the principal elastic flexural axes and coupling pitching of the rotor blade with the lead-lag bending of the blade. The primary elastic flex axes were inclined by constructing the blade of materials that display non-uniform stiffness, and the specification described various cross section distributions and the resulting inclined flex axes. Arrangements for varying the pitch of the rotor blade in a predetermined relationship with lead-lag bending of the blade, i.e., bending of the blade in a plane parallel to its plane of rotation were constructed
New design of hingeless helicopter rotor improves stability
Cantilever blades are attached directly to rotor hub, thereby substantially reducing cost and complexity and increasing reliability of helicopter rotor. Combination of structural flap-lag coupling and pitch-lag coupling provides damping of 6 to 10%, depending on magnitude of coupling parameters
A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK
Background Colorectal cancer (CRC) is an illness strongly influenced by sex and gender, with mortality rates in males significantly higher than females. There is still a dearth of understanding on where sex differences exist along the pathway from presentation to survival. The aim of this review is to identify where actions are needed to improve outcomes for both sexes, and to narrow the gap for CRC. Methods A cross-sectional review of national data was undertaken to identify sex differences in incidence, screening uptake, route to diagnosis, cancer stage at diagnosis and survival, and their influence in the sex differences in mortality. Results Overall incidence is higher in men, with an earlier age distribution, however, important sex differences exist in anatomical site. There were relatively small differences in screening uptake, route to diagnosis, cancer staging at diagnosis and survival. Screening uptake is higher in women under 69 years. Women are more likely to present as emergency cases, with more men diagnosed through screening and two-week-wait. No sex differences are seen in diagnosis for more advanced disease. Overall, age-standardised 5-year survival is similar between the sexes. Conclusions As there are minimal sex differences in the data from routes to diagnosis to survival, the higher mortality of colorectal cancer in men appears to be a result of exogenous and/or endogenous factors pre-diagnosis that lead to higher incidence rates. There are however, sex and gender differences that suggest more targeted interventions may facilitate prevention and earlier diagnosis in both men and women
Wind tunnel tests of four flexible wing ultralight gliders
The aerodynamic lift, drag, and pitching moment characteristics of four full scale, flexible wing, ultralight gliders were measured in the settling chamber of a low speed wind tunnel. The gliders were tested over a wide range of angle of attack and at two different velocities. Particular attention was devoted to the lift and pitching moment behavior at low and negative angles of attack because of the potential loss of longitudinal stability of flexible wing gliders in this regime. The test results were used to estimate the performance and longitudinal control characteristics of the gliders
Techniques for Improving the Stability of Soft Inplane Hingeless Rotors
The influence of basic parameters that govern flap lag stability of hingeless rotor blades in hover is reviewed, and potential methods are studied for improving the lead lag damping of soft inplane configurations for low thrust conditions. These conditions are relevant for ground and air resonance stability of coupled rotor body dynamic systems. Results indicate that the isolated rotor blade lead lag damping can be usefully increased by a combination of flap lag elastic coupling and pitch lag coupling. For a typical soft inplane configuration, 6% of critical damping can be obtained for moderate pitch lag coupling. For large values of the coupling parameters, the lead lag frequency is substantially reduced at high pitch angles and airfoil stall effects also reduce the lead lag damping
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Multifactorial Analysis of Differences Between Sporadic Breast Cancers and Cancers Involving BRCA1 and BRCA2 Mutations
Background: We have previously demonstrated that breast cancers associated with inherited BRCA1 and BRCA2 gene mutations differ from each other in their histopathologic appearances and that each of these types differs from breast cancers in patients unselected for family history (i.e., sporadic cancers). We have now conducted a more detailed examination of cytologic and architectural features of these tumors. Methods: Specimens of tumor tissue (5-µm-thick sections) were examined independently by two pathologists, who were unaware of the case or control subject status, for the presence of cell mitosis, lymphocytic infiltration, continuous pushing margins, and solid sheets of cancer cells; cell nuclei, cell nucleoli, cell necrosis, and cell borders were also evaluated. The resulting data were combined with previously available information on tumor type and tumor grade and further evaluated by multifactorial analysis. All statistical tests are two-sided. Results: Cancers associated with BRCA1 mutations exhibited higher mitotic counts (P = .001), a greater proportion of the tumor with a continuous pushing margin (P<.0001), and more lymphocytic infiltration (P = .002) than sporadic (i.e., control) cancers. Cancers associated with BRCA2 mutations exhibited a higher score for tubule formation (fewer tubules) (P = .0002), a higher proportion of the tumor perimeter with a continuous pushing margin (P<.0001), and a lower mitotic count (P = .003) than control cancers. Conclusions: Our study has identified key features of the histologic phenotypes of breast cancers in carriers of mutant BRCA1 and BRCA2 genes. This information may improve the classification of breast cancers in individuals with a family history of the disease and may ultimately aid in the clinical management of patients. [J Natl Cancer Inst 1998;90:1138-45
- …
