1,244 research outputs found
The STACEE-32 Ground Based Gamma-ray Detector
We describe the design and performance of the Solar Tower Atmospheric
Cherenkov Effect Experiment detector in its initial configuration (STACEE-32).
STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov
technique. In STACEE, the heliostats of a solar energy research array are used
to collect and focus the Cherenkov photons produced in gamma-ray induced air
showers. The large Cherenkov photon collection area of STACEE results in a
gamma-ray energy threshold below that of previous detectors.Comment: 45 pages, 25 figures, Accepted for publication in Nuclear Instruments
and Methods
Ultra deep sub-kpc view of nearby massive compact galaxies
Using Gemini North telescope ultra deep and high resolution (sub-kpc) K-band
adaptive optics imaging of a sample of 4 nearby (z~0.15) massive
(~10^{11}M_sun) compact (R<1.5 kpc) galaxies, we have explored the structural
properties of these rare objects with an unprecedented detail. Our surface
brightness profiles expand over 12 magnitudes in range allowing us to explore
the presence of any faint extended envelope on these objects down to stellar
mass densities ~10^{6} M_sun/kpc^{2} at radial distances of ~15 kpc. We find no
evidence for any extended faint tail altering the compactness of these
galaxies. Our objects are elongated, resembling visually S0 galaxies, and have
a central stellar mass density well above the stellar mass densities of objects
with similar stellar mass but normal size in the present universe. If these
massive compact objects will eventually transform into normal size galaxies,
the processes driving this size growth will have to migrate around
2-3x10^{10}M_sun stellar mass from their inner (R<1.7 kpc) region towards their
outskirts. Nearby massive compact galaxies share with high-z compact massive
galaxies not only their stellar mass, size and velocity dispersion but also the
shape of their profiles and the mean age of their stellar populations. This
makes these singular galaxies unique laboratories to explore the early stages
of the formation of massive galaxies.Comment: Accepted for publication in ApJ Letter. Version revised to match the
accepted versio
Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope
We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in
the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector,
called CELESTE, used first 40, then 53 heliostats of the former solar facility
"Themis" in the French Pyrenees to collect Cherenkov light generated in
atmospheric particle cascades. The signal from Mrk 421 is often strong. We
compare its flux with previously published multi-wavelength studies and infer
that we are straddling the high energy peak of the spectral energy
distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain
an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab
flux near 100 GeV. The data analysis and understanding of systematic biases
have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 --
corrected error in author lis
Building galaxies by accretion and in-situ star formation
We examine galaxy formation in a cosmological AMR simulation, which includes
two high resolution boxes, one centered on a 3 \times 10^14 M\odot cluster, and
one centered on a void. We examine the evolution of 611 massive (M\ast >
10^10M\odot) galaxies. We find that the fraction of the final stellar mass
which is accreted from other galaxies is between 15 and 40% and increases with
stellar mass. The accreted fraction does not depend strongly on environment at
a given stellar mass, but the galaxies in groups and cluster environments are
older and underwent mergers earlier than galaxies in lower density
environments. On average, the accreted stars are ~2.5 Gyrs older, and ~0.15 dex
more metal poor than the stars formed in-situ. Accreted stellar material
typically lies on the outskirts of galaxies; the average half-light radius of
the accreted stars is 2.6 times larger than that of the in-situ stars. This
leads to radial gradients in age and metallicity for massive galaxies, in
qualitative agreement with observations. Massive galaxies grow by mergers at a
rate of approximately 2.6% per Gyr. These mergers have a median (mass-weighted)
mass ratio less than 0.26 \pm 0.21, with an absolute lower limit of 0.20, for
galaxies with M\ast ~ 10^12 M\odot. This suggests that major mergers do not
dominate in the accretion history of massive galaxies. All of these results
agree qualitatively with results from SPH simulations by Oser et al. (2010,
2012).Comment: 18 pages, 12 figures, submitted to MNRA
Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV
We describe a new search for diffuse ultrahigh energy gamma-ray emission
associated with molecular clouds in the galactic disk. The Chicago Air Shower
Array (CASA), operating in coincidence with the Michigan muon array (MIA), has
recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995.
We search for gamma rays based upon the muon content of air showers arriving
from the direction of the galactic plane. We find no significant evidence for
diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma
rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90%
confidence limit) from the galactic plane region: (50 degrees < l < 200
degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on
models for emission from molecular clouds in the galaxy. We rule out
significant spectral hardening in the outer galaxy, and conclude that emission
from the plane at these energies is likely to be dominated by the decay of
neutral pions resulting from cosmic rays interactions with passive target gas
molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3
Postscript figure
The ATLAS3D project - XXV: Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators
We present a detailed two-dimensional stellar dynamical analysis of as ample of 44 cosmological hydrodynamical simulations of individual central galaxies with stellar masses of 2 x 1010Msun ∼≤ Mstar ∼≤ 6x 1011Msun. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion, and higher-order Gauss-Hermite moments h3 and h4 are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the λR-parameter. The velocity, velocity dispersion, h3, and h4 fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS3D survey. This includes fast (regular), slow, and misaligned rotation, hot spheroids with embedded cold disk components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present-day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a significant influence on the rotation properties resulting in both a spin-down as well as a spin-up of the merger remnant. Lower mass galaxies with significant in-situ formation of stars, or with additional gas-rich major mergers - resulting in a spin-up - in their formation history, form elongated fast rotators with a clear anti-correlation of h3 and v/σ. An additional formation path for fast rotators includes gas-poor major mergers leading to a spin-up of the remnants. This formation path does not result in anti-correlated h3 and v/σ. The galaxies most consistent with the rare class of non-rotating round early-type galaxies grow by gas-poor minor mergers alone. In general, more massive galaxies have less in-situ star formation since z ∼ 2, rotate slower and have older stellar populations. (shortened)PostprintPeer reviewe
Results from the Super Cryogenic Dark Matter Search (SuperCDMS) experiment at Soudan
We report the result of a blinded search for Weakly Interacting Massive
Particles (WIMPs) using the majority of the SuperCDMS Soudan dataset. With an
exposure of 1690 kg days, a single candidate event is observed, consistent with
expected backgrounds. This analysis (combined with previous Ge results) sets an
upper limit on the spin-independent WIMP--nucleon cross section of () cm at 46 GeV/. These results set the
strongest limits for WIMP--germanium-nucleus interactions for masses 12
GeV/
Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity
The Sudbury Neutrino Observatory (SNO) has precisely determined the total
active (nu_x) 8B solar neutrino flux without assumptions about the energy
dependence of the nu_e survival probability. The measurements were made with
dissolved NaCl in the heavy water to enhance the sensitivity and signature for
neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/-
0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and
standard solar models. A global analysis of these and other solar and reactor
neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta
= 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of
5.4 standard deviations.Comment: Submitted to Phys. Rev. Let
- …
