1,163 research outputs found
Neural mechanisms of resistance to peer influence in early adolescence
During the shift from a parent-dependent child to a fully autonomous adult, peers take on a significant role in shaping the adolescent’s behaviour. Peer-derived influences are not always positive, however. Here we explore neural correlates of inter-individual differences in the probability of resisting peer influence in early adolescence. Using functional magnetic-resonance imaging (fMRI), we found striking differences between 10-year old children with high and low resistance to peer influence in their brain activity during observation of angry hand-movements and angry facial expressions: compared with subjects with low resistance to peer influence, individuals with high resistance showed a highly coordinated brain activity in neural systems underlying perception of action and decision making. These findings suggest that the probability of resisting peer influence depends on neural interactions during observation of emotion-laden actions
Glucose-Insulin-Potassium Therapy Guided by a Glucose-Controlled Insulin Infusion System in Acute Myocardinal Infarction
Too little, too late: reduced visual span and speed characterize pure alexia
Whether normal word reading includes a stage of visual processing selectively dedicated to word or letter recognition is highly debated. Characterizing pure alexia, a seemingly selective disorder of reading, has been central to this debate. Two main theories claim either that 1) Pure alexia is caused by damage to a reading specific brain region in the left fusiform gyrus or 2) Pure alexia results from a general visual impairment that may particularly affect simultaneous processing of multiple items. We tested these competing theories in 4 patients with pure alexia using sensitive psychophysical measures and mathematical modeling. Recognition of single letters and digits in the central visual field was impaired in all patients. Visual apprehension span was also reduced for both letters and digits in all patients. The only cortical region lesioned across all 4 patients was the left fusiform gyrus, indicating that this region subserves a function broader than letter or word identification. We suggest that a seemingly pure disorder of reading can arise due to a general reduction of visual speed and span, and explain why this has a disproportionate impact on word reading while recognition of other visual stimuli are less obviously affected
Ultrafast Raman laser mode-locked by nanotubes
We demonstrate passive mode-locking of a Raman fiber laser using a nanotube-based saturable absorber coupled to a net normal dispersion cavity. This generates highly chirped 500 ps pulses. These are then compressed down to 2 ps , with 1.4 kW peak power, making it a simple wavelength-versatile source for various applications
High Strain-Rate Response of Spiropyran Mechanophores in PMMA
We report the high strain-rate response of a spiropyran
(SP) mechanophore in poly(methylmethacrylate). Previous
work on this system has demonstrated a reversible bond
scission in the SP under local tensile force, converting it to a
fluorescent merocyanine form. A Hopkinson bar was used to
apply fast compressive loads at rates from 102 to 104 s21,
resulting in significant activation of the SP near fracture surfaces.
However, comparison with a similar thermochromic SP
reveals that much of the observed activation likely arises from
thermal effects during high-rate fracture. These results show
the importance of a thermally active control system in distinguishing
mechanochromic response during high-rate loading.
Microscale fluorescence mapping of the fracture surfaces using
a confocal Raman microspectrometer suggests that some distinct
mechanical activation may be occurring in craze-like
regions during fibril rupture. The thermal response of the SP is
useful in its own right for characterizing plastic heating regions
during dynamic fracture.This work was funded by the Defense Threat Reduction Agency Basic Sciences program under grant number HDTRA139181 and managed by Su Peiris
High intensity neutrino oscillation facilities in Europe
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
Design of the Swiss Atrial Fibrillation Cohort Study (Swiss-AF): structural brain damage and cognitive decline among patients with atrial fibrillation.
Several studies found that patients with atrial fibrillation (AF) have an increased risk of cognitive decline and dementia over time. However, the magnitude of the problem, associated risk factors and underlying mechanisms remain unclear.
This article describes the design and methodology of the Swiss Atrial Fibrillation (Swiss-AF) Cohort Study, a prospective multicentre national cohort study of 2400 patients across 13 sites in Switzerland. Eligible patients must have documented AF. Main exclusion criteria are the inability to provide informed consent and the presence of exclusively short episodes of reversible forms of AF. All patients undergo extensive phenotyping and genotyping, including repeated assessment of cognitive functions, quality of life, disability, electrocardiography and cerebral magnetic resonance imaging. We also collect information on health related costs, and we assemble a large biobank. Key clinical outcomes in Swiss-AF are death, stroke, systemic embolism, bleeding, hospitalisation for heart failure and myocardial infarction. Information on outcomes and updates on other characteristics are being collected during yearly follow-up visits.
Up to 7 April 2017, we have enrolled 2133 patients into Swiss-AF. With the current recruitment rate of 15 to 20 patients per week, we expect that the target sample size of 2400 patients will be reached by summer 2017.
Swiss-AF is a large national prospective cohort of patients with AF in Switzerland. This study will provide important new information on structural and functional brain damage in patients with AF and on other AF related complications, using a large variety of genetic, phenotypic and health economic parameters
Palladium-Gallium Intermetallic Compounds for the Selective Hydrogenation of Acetylene: Part II: Surface Characterization and Catalytic Performance
- …
