7,785 research outputs found
Stabilization of collapse and revival dynamics by a non-Markovian phonon bath
Semiconductor quantum dots (QDs) have been demonstrated to be versatile
candidates to study the fundamentals of light-matter interaction [1-3]. In
contrast with atom optics, dissipative processes are induced by the inherent
coupling to the environment and are typically perceived as a major obstacle
towards stable performances in experiments and applications [4].
In this paper we show that this is not necessarily the case. In fact, the
memory of the environment can enhance coherent quantum optical effects. In
particular, we demonstrate that the non-Markovian coupling to an incoherent
phonon bath has a stabilizing effect on the coherent QD cavity-quantum
electrodynamics (cQED) by inhibiting irregular oscillations and boosting
regular collapse and revival patterns. For low photon numbers we predict QD
dynamics that deviate dramatically from the well-known atomic Jaynes-Cummings
model. Our proposal opens the way to a systematic and deliberate design of
photon quantum effects via specifically engineered solid-state environments.Comment: 5 pages, 4 figure
Comparative study of macroscopic quantum tunneling in Bi_2Sr_2CaCu_2O_y intrinsic Josephson junctions with different device structures
We investigated macroscopic quantum tunneling (MQT) of
BiSrCaCuO intrinsic Josephson junctions (IJJs) with two device
structures. One is a nanometer-thick small mesa structure with only two or
three IJJs and the other is a stack of a few hundreds of IJJs on a narrow
bridge structure. Experimental results of switching current distribution for
the first switching events from zero-voltage state showed a good agreement with
the conventional theory for a single Josephson junction, indicating that a
crossover temperature from thermal activation to MQT regime for the former
device structure was as high as that for the latter device structure. Together
with the observation of multiphoton transitions between quantized energy levels
in MQT regime, these results strongly suggest that the observed MQT behavior is
intrinsic to a single IJJ in high- cuprates, independent of device
structures. The switching current distribution for the second switching events
from the first resistive state, which were carefully distinguished from the
first switchings, was also compared between two device structures. In spite of
the difference in the heat transfer environment, the second switching events
for both devices were found to show a similar temperature-independent behavior
up to a much higher temperature than the crossover temperature for the first
switching. We argue that it cannot be explained in terms of the self-heating
owing to dissipative currents after the first switching. As possible
candidates, the MQT process for the second switching and the effective increase
of electronic temperature due to quasiparticle injection are discussed.Comment: 10pages, 7figures, submitted to Phys. Rev.
Gas bulk motion in the Perseus cluster measured with SUZAKU
We present the results from Suzaku observations of the Perseus galaxy
cluster, which is relatively close, the brightest in the X-ray sky and a
relaxed object with a cool core. A number of exposures of central regions and
offset pointing with the X-ray Imaging Spectrometer cover a region within radii
of 20'-30'. The central data are used to evaluate the instrumental energy-scale
calibration with accuracy confirmed to within around 300 km/s, by the spatial
and temporal variation of the instruments. These deep and well-calibrated data
are used to measure X-ray redshifts of the intracluster medium. A hint of gas
bulk motion, with radial velocity of about -(150-300) km/s, relative to the
main system was found at 2-4 arcmin (45-90kpc) west of the cluster center,
where an X-ray excess and a cold front were found previously. No other velocity
structure was discovered. Over spatial scales of 50-100kpc and within 200kpc
radii of the center, the gas-radial-velocity variation is below 300 km/s, while
over scales of 400 kpc within 600 kpc radii, the variation is below 600 km/s.
These X-ray redshift distributions are compared spatially with those of optical
member galaxies for the first time in galaxy clusters. Based on X-ray line
widths gas turbulent velocities within these regions are also constrained
within 1000-3000 km/s. These results of gas dynamics in the core and larger
scales in association with cluster merger activities are discussed and future
potential of high-energy resolution spectroscopy with ASTRO-H is considered.Comment: Accepted to Ap
Strong lensing in the Einstein-Straus solution
We analyse strong lensing in the Einstein-Straus solution with positive
cosmological constant. For concreteness we compare the theory to the light
deflection of the lensed quasar SDSS J1004+4112.Comment: 14 pages, 3 figures, 5 tables. To the memory of J\"urgen Ehlers v2
contains a note added during publication in GRG and less typo
Ground state of a polydisperse electrorheological solid: Beyond the dipole approximation
The ground state of an electrorheological (ER) fluid has been studied based
on our recently proposed dipole-induced dipole (DID) model. We obtained an
analytic expression of the interaction between chains of particles which are of
the same or different dielectric constants. The effects of dielectric constants
on the structure formation in monodisperse and polydisperse electrorheological
fluids are studied in a wide range of dielectric contrasts between the
particles and the base fluid. Our results showed that the established
body-centered tetragonal ground state in monodisperse ER fluids may become
unstable due to a polydispersity in the particle dielectric constants. While
our results agree with that of the fully multipole theory, the DID model is
much simpler, which offers a basis for computer simulations in polydisperse ER
fluids.Comment: Accepted for publications by Phys. Rev.
Time delay in the Einstein-Straus solution
The time delay of strong lensing is computed in the framework of the
Einstein-Straus solution. The theory is compared to the observational bound on
the time delay of the lens SDSS J1004+4112.Comment: 20 pages, 4 tables, 1 figur
The Sunyaev-Zel'dovich Effect at Five Arc-seconds: RXJ1347.5-1145 Imaged by ALMA
We present the first image of the thermal Sunyaev-Zel'dovich effect (SZE)
obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Combining
7-m and 12-m arrays in Band 3, we create an SZE map toward a galaxy cluster
RXJ1347.5-1145 with 5 arc-second resolution (corresponding to the physical size
of 20 kpc/h), the highest angular and physical spatial resolutions achieved to
date for imaging the SZE, while retaining extended signals out to 40
arc-seconds. The 1-sigma statistical sensitivity of the image is 0.017 mJy/beam
or 0.12 mK_CMB at the 5 arc-second full width at half maximum. The SZE image
shows a good agreement with an electron pressure map reconstructed
independently from the X-ray data and offers a new probe of the small-scale
structure of the intracluster medium. Our results demonstrate that ALMA is a
powerful instrument for imaging the SZE in compact galaxy clusters with
unprecedented angular resolution and sensitivity. As the first report on the
detection of the SZE by ALMA, we present detailed analysis procedures including
corrections for the missing flux, to provide guiding methods for analyzing and
interpreting future SZE images by ALMA.Comment: 20 pages, 13 figures. Accepted for publication in PAS
Possibility of valence-fluctuation mediated superconductivity in Cd-doped CeIrIn probed by In-NQR
We report on a pressure-induced evolution of exotic superconductivity and
spin correlations in CeIr(InCd) by means of
In-Nuclear-Quadrupole-Resonance (NQR) studies. Measurements of an NQR spectrum
and nuclear-spin-lattice-relaxation rate have revealed that
antiferromagnetism induced by the Cd-doping emerges locally around Cd dopants,
but superconductivity is suddenly induced at = 0.7 and 0.9 K at 2.34 and
2.75 GPa, respectively. The unique superconducting characteristics with a large
fraction of the residual density of state at the Fermi level that increases
with differ from those for anisotropic superconductivity mediated by
antiferromagnetic correlations. By incorporating the pressure dependence of the
NQR frequency pointing to the valence change of Ce, we suggest that
unconventional superconductivity in the CeIr(InCd) system may
be mediated by valence fluctuations.Comment: Accepted for publication in Physical Review Letter
- …
