1,435 research outputs found
Scaling Between Periodic Anderson and Kondo Lattice Models
Continuous-Time Quantum Monte Carlo (CT-QMC) method combined with Dynamical
Mean Field Theory (DMFT) is used to calculate both Periodic Anderson Model
(PAM) and Kondo Lattice Model (KLM). Different parameter sets of both models
are connected by the Schrieffer-Wolff transformation. For degeneracy N=2, a
special particle-hole symmetric case of PAM at half filling which always fixes
one electron per impurity site is compared with the results of the KLM. We find
a good mapping between PAM and KLM in the limit of large on-site Hubbard
interaction U for different properties like self-energy, quasiparticle residue
and susceptibility. This allows us to extract quasiparticle mass
renormalizations for the f electrons directly from KLM. The method is further
applied to higher degenerate case and to realsitic heavy fermion system CeRhIn5
in which the estimate of the Sommerfeld coefficient is proven to be close to
the experimental value
Anomalous time correlation in two-dimensional driven diffusive systems
We study the time correlation function of a density field in two-dimensional
driven diffusive systems within the framework of fluctuating hydrodynamics. It
is found that the time correlation exhibits power-law behavior in an
intermediate time regime in the case that the fluctuation-dissipation relation
is violated and that the power-law exponent depends on the extent of this
violation. We obtain this result by employing a renormalization group method to
treat a logarithmic divergence in time.Comment: 6 page
An order parameter equation for the dynamic yield stress in dense colloidal suspensions
We study the dynamic yield stress in dense colloidal suspensions by analyzing
the time evolution of the pair distribution function for colloidal particles
interacting through a Lennard-Jones potential. We find that the equilibrium
pair distribution function is unstable with respect to a certain anisotropic
perturbation in the regime of low temperature and high density. By applying a
bifurcation analysis to a system near the critical state at which the stability
changes, we derive an amplitude equation for the critical mode. This equation
is analogous to order parameter equations used to describe phase transitions.
It is found that this amplitude equation describes the appearance of the
dynamic yield stress, and it gives a value of 2/3 for the shear thinning
exponent. This value is related to the mean field value of the critical
exponent in the Ising model.Comment: 8 pages, 2 figure
Effect of Disorder on Fermi surface in Heavy Electron Systems
The Kondo lattice model with substitutional disorder is studied with
attention to the size of the Fermi surface and the associated Dingle
temperature. The model serves for understanding heavy-fermion Ce compounds
alloyed with La according to substitution Ce{x}La{1-x}. The Fermi surface is
identified from the steepest change of the momentum distribution of conduction
electrons, and is derived at low enough temperature by the dynamical mean-field
theory (DMFT) combined with the coherent potential approximation (CPA). The
Fermi surface without magnetic field increases in size with decreasing x from
x=1 (Ce end), and disappears at such x that gives the same number of localized
spins as that of conduction electrons. From the opposite limit of x=0 (La end),
the Fermi surface broadens quickly as x increases, but stays at the same
position as that of the La end. With increasing magnetic field, a metamagnetic
transition occurs, and the Fermi surface above the critical field changes
continuously across the whole range of x. The Dingle temperature takes a
maximum around x=0.5. Implication of the results to experimental observation is
discussed.Comment: 5 pages, 5 figure
Electronic Orders Induced by Kondo Effect in Non-Kramers f-Electron Systems
This paper clarifies the microscopic nature of the staggered scalar order,
which is specific to even number of f electrons per site. In such systems,
crystalline electric field (CEF) can make a singlet ground state. As exchange
interaction with conduction electrons increases, the CEF singlet at each site
gives way to Kondo singlets. The collective Kondo singlets are identified with
itinerant states that form energy bands. Near the boundary of itinerant and
localized states, a new type of electronic order appears with staggered Kondo
and CEF singlets. We present a phenomenological three-state model that
qualitatively reproduces the characteristic phase diagram, which have been
obtained numerically with use of the continuous-time quantum Monte Carlo
combined with the dynamical mean-field theory. The scalar order observed in
PrFe_4P_{12} is ascribed to this staggered order accompanying charge density
wave (CDW) of conduction electrons. Accurate photoemission and tunneling
spectroscopy should be able to probe sharp peaks below and above the Fermi
level in the ordered phase.Comment: 7 pages, 8 figure
Self-Consistent Perturbation Theory for Thermodynamics of Magnetic Impurity Systems
Integral equations for thermodynamic quantities are derived in the framework
of the non-crossing approximation (NCA). Entropy and specific heat of 4f
contribution are calculated without numerical differentiations of thermodynamic
potential. The formulation is applied to systems such as PrFe4P12 with
singlet-triplet crystalline electric field (CEF) levels.Comment: 3 pages, 2 figures, proc. ASR-WYP-2005 (JAERI
Electronic Order with Staggered Kondo and Crystalline Electric Field Singlets
Novel electronic order is found theoretically for a system where even number
of localized electrons per site are coupled with conduction electrons. For
precise quantitative study, a variant of the Kondo lattice model is taken with
crystalline electric field (CEF) singlet and triplet states for each site.
Using the dynamical mean-field theory combined with the continuous-time quantum
Monte Carlo method, a staggered order with alternating Kondo and CEF singlets
is identified for a case with one conduction electron per site being
distributed in two conduction bands each of which is quarter-filled. This
electronic order accompanies a charge density wave (CDW) of conduction
electrons that accumulate more on Kondo-singlet sites than on CEF-singlet
sites. Possible relevance of the present order to the scalar order in
PrFeP is discussed.Comment: 11 pages, 17 figure
Microscopic Mechanism for Staggered Scalar Order in PrFe4P12
A microscopic model is proposed for the scalar order in PrFe4P12 where f2
crystalline electric field (CEF) singlet and triplet states interact with two
conduction bands. By combining the dynamical mean-field theory and the
continuous-time quantum Monte Carlo, we obtain an electronic order with
staggered Kondo and CEF singlets with the total conduction number being unity
per site. The ground state becomes semimetallic provided that the two
conduction bands have different occupation numbers. This model naturally
explains experimentally observed properties in the ordered phase of PrFe4P12
such as the scalar order parameter, temperature dependence of the resistivity,
field-induced staggered moment, and inelastic features in neutron scattering.
The Kondo effect plays an essential role for ordering, in strong contrast with
ordinary magnetic orders by the RKKY interaction.Comment: 4 pages, 4figure
Non-linear rheology of layered systems - a phase model approach
We study non-linear rheology of a simple theoretical model developed to mimic
layered systems such as lamellar structures under shear. In the present work we
study a 2-dimensional version of the model which exhibits a Kosterlitz-Thouless
transition in equilibrium at a critical temperature Tc. While the system
behaves as Newtonain fluid at high temperatures T > Tc, it exhibits shear
thinning at low temperatures T < Tc. The non-linear rheology in the present
model is understood as due to motions of edge dislocations and resembles the
non-linear transport phenomena in superconductors by vortex motions.Comment: 10 pages, 5 figures, contribution to the conference proceeding of
International Conference on Science of Friction, Irago Aichi, Japan Sept 9-13
200
- …
