184 research outputs found

    Safety, tolerability, and pharmacokinetics of allopregnanolone as a regenerative therapeutic for Alzheimer's disease: A single and multiple ascending dose phase 1b/2a clinical trial

    Get PDF
    IntroductionAllopregnanolone is an endogenous neurosteroid with the potential to be a novel regenerative therapeutic for Alzheimer's disease (AD). Foundations of mechanistic understanding and well-established preclinical safety efficacy make it a viable candidate.MethodsA randomized, double-blinded, placebo-controlled, single and multiple ascending dose trial was conducted. Intravenous allopregnanolone or placebo was administered once-per-week for 12 weeks with a 1-month follow-up. Participants with early AD (mild cognitive impairment due to AD or mild AD), a Mini-Mental State Examination score of 20-26 inclusive, and age ≥55 years were randomized (6:2 to three allopregnanolone dosing cohorts or one placebo cohort). Primary endpoint was safety and tolerability. Secondary endpoints included pharmacokinetic (PK) parameters and maximally tolerated dose (MTD). Exploratory endpoints included cognitive and imaging biomarkers.ResultsA total of 24 participants completed the trial. Allopregnanolone was safe and well tolerated in all study participants. No differences were observed between treatment arms in the occurrence and severity of adverse events (AE). Most common AE were mild to moderate in severity and included rash (n = 4 [22%]) and fatigue (n = 3 [17%]). A single non-serious AE, dizziness, was attributable to treatment. There was one serious AE not related to treatment. Pharmacokinetics indicated a predictable linear dose-response in plasma concentration of allopregnanolone after intravenous administration over 30 minutes. The maximum plasma concentrations for the 2 mg, 4 mg, 6 mg, and 10 mg dosages were 14.53 ng/mL (+/-7.31), 42.05 ng/mL (+/-14.55), 60.07 ng/mL (+/-12.8), and 137.48 ng/mL (+/-38.69), respectively. The MTD was established based on evidence of allopregnanolone-induced mild sedation at the highest doses; a sex difference in the threshold for sedation was observed (males 10 mg; females 14 mg). No adverse outcomes on cognition or magnetic resonance imaging-based imaging outcomes were evident.ConclusionsAllopregnanolone was well tolerated and safe across all doses in persons with early AD. Safety, MTD, and PK profiles support advancement of allopregnanolone as a regenerative therapeutic for AD to a phase 2 efficacy trial.Trial registrationClinicalTrials.gov-NCT02221622

    Correction to: Polygenic effects on the risk of Alzheimer’s disease in the Japanese population (Alzheimer\u27s Research & Therapy, (2024), 16, 1, (45), 10.1186/s13195-024-01414-x)

    Get PDF
    Following publication of the original article [1], the authors corrected an error in Fig. 2. (Figure presented.) The PRS.noAPOE and PRS.adjLD correlated with CSF Tau/Aβ42 ratios in the MCI. CSF tTau/Aβ42 (A, C) and pTau/Aβ42 (B, D) ratios by decile of PRS are shown in each diagnostic group. The participants were divided into ten groups based on the PRS.noAPOE, ranging from the lowest group (1st decile) to the highest group (10th decile). CN = cognitively normal; MCI = mild cognitive impairment; ADD = Alzheimer’s disease dementia Error: Figs. 2C and D are the same figures as Figs. 2A and B in the published article. The corrected figure is given below: The original article [1] has been updated

    Mammographic density. Measurement of mammographic density

    Get PDF
    Mammographic density has been strongly associated with increased risk of breast cancer. Furthermore, density is inversely correlated with the accuracy of mammography and, therefore, a measurement of density conveys information about the difficulty of detecting cancer in a mammogram. Initial methods for assessing mammographic density were entirely subjective and qualitative; however, in the past few years methods have been developed to provide more objective and quantitative density measurements. Research is now underway to create and validate techniques for volumetric measurement of density. It is also possible to measure breast density with other imaging modalities, such as ultrasound and MRI, which do not require the use of ionizing radiation and may, therefore, be more suitable for use in young women or where it is desirable to perform measurements more frequently. In this article, the techniques for measurement of density are reviewed and some consideration is given to their strengths and limitations

    A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease

    Get PDF
    Background: Alzheimer’s disease, the most common cause of dementia, causes a progressive and irreversible deterioration of cognition that can sometimes be difficult to diagnose, leading to suboptimal patient care. Methods: We developed a predictive model that computes multi-regional statistical morpho-functional mesoscopic traits from T1-weighted MRI scans, with or without cognitive scores. For each patient, a biomarker called “Alzheimer’s Predictive Vector” (ApV) was derived using a two-stage least absolute shrinkage and selection operator (LASSO). Results: The ApV reliably discriminates between people with (ADrp) and without (nADrp) Alzheimer’s related pathologies (98% and 81% accuracy between ADrp - including the early form, mild cognitive impairment - and nADrp in internal and external hold-out test sets, respectively), without any a priori assumptions or need for neuroradiology reads. The new test is superior to standard hippocampal atrophy (26% accuracy) and cerebrospinal fluid beta amyloid measure (62% accuracy). A multiparametric analysis compared DTI-MRI derived fractional anisotropy, whose readout of neuronal loss agrees with ADrp phenotype, and SNPrs2075650 is significantly altered in patients with ADrp-like phenotype. Conclusions: This new data analytic method demonstrates potential for increasing accuracy of Alzheimer diagnosis

    Experimental manipulation of radiographic density in mouse mammary gland

    Get PDF
    INTRODUCTION: Extensive mammographic density in women is associated with increased risk for breast cancer. Mouse models provide a powerful approach to the study of human diseases, but there is currently no model that is suited to the study of mammographic density. METHODS: We performed individual manipulations of the stromal, epithelial and matrix components of the mouse mammary gland and examined the alterations using in vivo and ex vivo radiology, whole mount staining and histology. RESULTS: Areas of density were generated that resembled densities in mammographic images of the human breast, and the nature of the imposed changes was confirmed at the cellular level. Furthermore, two genetic models, one deficient in epithelial structure (Pten conditional tissue specific knockout) and one with hyperplastic epithelium and mammary tumors (MMTV-PyMT), were used to examine radiographic density. CONCLUSION: Our data show the feasibility of altering and imaging mouse mammary gland radiographic density by experimental and genetic means, providing the first step toward modelling the biological processes that are responsible for mammographic density in the mouse

    Simulation of Ground-Truth Validation Data Via Physically- and Statistically-Based Warps

    Full text link
    Abstract. The problem of scarcity of ground-truth expert delineations of medi-cal image data is a serious one that impedes the training and validation of medi-cal image analysis techniques. We develop an algorithm for the automatic generation of large databases of annotated images from a single reference data-set. We provide a web-based interface through which the users can upload a reference data set (an image and its corresponding segmentation and landmark points), provide custom setting of parameters, and, following server-side com-putations, generate and download an arbitrary number of novel ground-truth data, including segmentations, displacement vector fields, intensity non-uniformity maps, and point correspondences. To produce realistic simulated data, we use variational (statistically-based) and vibrational (physically-based) spatial deformations, nonlinear radiometric warps mimicking imaging non-homogeneity, and additive random noise with different underlying distributions. We outline the algorithmic details, present sample results, and provide the web address to readers for immediate evaluation and usage

    Suramin Alleviates Glomerular Injury and Inflammation in the Remnant Kidney

    Get PDF
    Background: Recently, we demonstrated that suramin, a compound that inhibits the interaction of multiple cytokines/ growth factors with their receptors, inhibits activation and proliferation of renal interstitial fibroblasts, and attenuates the development of renal interstitial fibrosis in the murine model of unilateral ureteral obstruction (UUO). However, it remains unclear whether suramin can alleviate glomerular and vascular lesions, which are not typical pathological changes in the UUO model. So we tested the efficacy of suramin in the remnant kidney after 5/6 nephrectomy, a model characterized by the slow development of glomerulosclerosis, vascular sclerosis, tubulointerstitial fibrosis and renal inflammation, mimicking human disease. Methods/Findings: 5/6 of normal renal mass was surgically ablated in male rats. On the second week after surgery, rats were randomly divided into suramin treatment and non-treatment groups. Suramin was given at 10 mg/kg once per week for two weeks. In the remnant kidney of mice receiving suramin, glomerulosclerosis and vascular sclerosis as well as inflammation were ameliorated. Suramin also attenuated tubular expression of two chemokines, monocyte chemoattractant protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). After renal mass ablation, several intracellular molecules associated with renal fibrosis, including NF-kappaB p65, Smad-3, signal transducer and activator of transcription-3 and extracellular regulated kinase 1/2, are phosphorylated; suramin treatment inhibited thei

    Plasma neutrophil gelatinase associated lipocalin (NGAL) is associated with kidney function in uraemic patients before and after kidney transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutrophil gelatinase associated lipocalin (NGAL) is a biomarker of kidney injury. We examined plasma levels of NGAL in a cohort of 57 kidney allograft recipients (Tx group, 39 ± 13 years), a uraemic group of 40 patients remaining on the waiting list (47 ± 11 years) and a control group of 14 healthy subjects matched for age, sex and body mass index (BMI). The kidney graft recipients were studied at baseline before transplantation and 3 and 12 months after transplantation and the uraemic group at baseline and after 12 months.</p> <p>Methods</p> <p>NGAL was measured using a validated in-house Time-Resolved Immuno-flourometric assay (TRIFMA). Repeated measurements differed by < 10% and mean values were used for statistical analyses. Spearman rank order correlation analysis and the Kruskal-Wallis non-parametric test were used to evaluate the association of NGAL concentrations with clinical parameters.</p> <p>Results</p> <p>Plasma NGAL levels before transplantation in the Tx and uraemic groups were significantly higher than in the healthy controls (1,251 μg/L, 1,478 μg/L vs. 163 μg/L, p < 0.0001). In the Tx group NGAL concentrations were associated with serum creatinine (R = 0.51, p < 0.0001), duration of end-stage renal failure (R = 0.41, p = 0.002) and leukocyte count (R = 0.29, p < 0.026). At 3 and 12 months plasma NGAL concentrations declined to 223 μg/L and 243 μg/L, respectively and were associated with homocysteine (R = 0.39, p = 0.0051 and R = 0.47, p = 0.0007).</p> <p>Conclusions</p> <p>Plasma NGAL is a novel marker of kidney function, which correlates to duration of end-stage renal failure (ESRD) and serum creatinine in uraemic patients awaiting kidney transplantation. Plasma NGAL is associated with homocysteine in transplanted patients. The prognostic value of these findings requires further studies.</p

    Mammographic density, breast cancer risk and risk prediction

    Get PDF
    In this review, we examine the evidence for mammographic density as an independent risk factor for breast cancer, describe the risk prediction models that have incorporated density, and discuss the current and future implications of using mammographic density in clinical practice. Mammographic density is a consistent and strong risk factor for breast cancer in several populations and across age at mammogram. Recently, this risk factor has been added to existing breast cancer risk prediction models, increasing the discriminatory accuracy with its inclusion, albeit slightly. With validation, these models may replace the existing Gail model for clinical risk assessment. However, absolute risk estimates resulting from these improved models are still limited in their ability to characterize an individual's probability of developing cancer. Promising new measures of mammographic density, including volumetric density, which can be standardized using full-field digital mammography, will likely result in a stronger risk factor and improve accuracy of risk prediction models
    corecore