5,029 research outputs found
Thermal desorption study of physical forces at the PTFE surface
Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage
Use of high L.E.T. radiation to improve adhesion of metals to polytetrafluoroethylene
MgK alpha X-rays (1254 eV) and 2 keV electrons irradiate the surface of polytetrafluoro ethylene (PTFE). The damage is confined to a few tenths of a micron below the surface, and the doses exceed 10 to the eight power rad. X-ray Photoelectron Spectroscopy (XPS) of the irradiated surfaces and mass spectroscopy of the gaseous products of irradiation indicate that the damaged layer is crosslinked or branched PTFE. After either type of irradiation, the surface has enhanced affinity for metals and a lower contact angle with hexadecane. Tape pull tests show that evaporated Ni and Au films adhere better to the irradiated surface. XPS shows the Ni interacts chemically with PTFE forming NiF2 and possibly NiC. However, the gold adhesion and contact angle results indicate that the interaction is, at least in part, chemically nonspecific. Decreased contact angles on FEP Teflon crystallized against gold were attributed to either the presence of a polar oxygen layer or increased physical forces due to greater density. In the case of irradiated PTFE, no oxygen on the surface was observed. The crosslinked structure might, however, have a greater density, thus accounting for the observed increase in adhesion and wettability
Upper-division Student Understanding of Coulomb's Law: Difficulties with Continuous Charge Distributions
Utilizing the integral expression of Coulomb's Law to determine the electric
potential from a continuous charge distribution is a canonical exercise in
Electricity and Magnetism (E&M). In this study, we use both think-aloud
interviews and responses to traditional exam questions to investigate student
difficulties with this topic at the upper-division level. Leveraging a
theoretical framework for the use of mathematics in physics, we discuss how
students activate, construct, execute and reflect on the integral form of
Coulomb's Law when solving problems with continuous charge distributions. We
present evidence that junior-level E&M students have difficulty mapping
physical systems onto the mathematical expression for the Coulomb potential.
Common challenges include difficulty expressing the difference vector in
appropriate coordinates as well as determining expressions for the differential
charge element and limits of integration for a specific charge distribution. We
discuss possible implications of these findings for future research directions
and instructional strategies.Comment: 5 pages, 1 figure, 2 tables, accepted to 2012 PERC Proceeding
Evaluating Gyrochronology on the Zero-Age-Main-Sequence: Rotation Periods in the Southern Open Cluster Blanco 1 from the KELT-South Survey
We report periods for 33 members of Blanco 1 as measured from KELT-South
light curves, the first reported rotation periods for this benchmark
zero-age-main-sequence open cluster. The distribution of these stars spans from
late-A or early-F dwarfs to mid-K with periods ranging from less than a day to
~8 days. The rotation period distribution has a morphology similar to the
coeval Pleiades cluster, suggesting the universal nature of stellar rotation
distributions. Employing two different gyrochronology methods, we find an age
of 146+13-14 Myr for the cluster. Using the same techniques, we infer an age of
134+9-10 Myr for the Pleiades measured from existing literature rotation
periods. These rotation-derived ages agree with independently determined
cluster ages based on the lithium depletion boundary technique. Additionally,
we evaluate different gyrochronology models, and quantify levels of agreement
between the models and the Blanco 1/Pleiades rotation period distributions,
including incorporating the rotation distributions of clusters at ages up to
1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the
rotation evolution of stars hotter than the Sun; however, we find cooler stars
rotating faster than predicted by a Skumanich-law, suggesting a mass dependence
in the efficiency of stellar angular momentum loss rate. Finally, we compare
the Blanco 1 and Pleiades rotation period distributions to available non-linear
angular momentum evolution models. We find they require a significant mass
dependence on the initial rotation rate of solar-type stars to reproduce the
observed range of rotation periods at a given stellar mass, and are furthermore
unable to predict the observed over-density of stars along the upper-envelope
of the clusters' rotation distributions.Comment: 19 pages,14 figures, 3 tables -- Accepted for publication in Ap
Excimer lasers
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage
Alumina fiber strength improvement
The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation
Opto-mechanical micro-macro entanglement
We propose to create and detect opto-mechanical entanglement by storing one
component of an entangled state of light in a mechanical resonator and then
retrieving it. Using micro-macro entanglement of light as recently demonstrated
experimentally, one can then create opto-mechanical entangled states where the
components of the superposition are macroscopically different. We apply this
general approach to two-mode squeezed states where one mode has undergone a
large displacement. Based on an analysis of the relevant experimental
imperfections, the scheme appears feasible with current technology.Comment: 7 pages, 6 figures, to appear in PRL, submission coordinated with
Sekatski et al. who reported on similar result
Interfacial chemistry of a perfluoropolyether lubricant studied by XPS and TDS
The interfacial chemistry of Fomblin Z25, a commercial perfluoropolyether used as lubricant for space applications, with different metallic surfaces: 440C steel, gold and aluminum was studied. Thin layers of Fomblin Z25 were evaporated onto the oxide-free substrates and the interfacial chemistry studied using XPS and TDS. The reactions were induced by heating the substrate and by rubbing the substrate with a steel ball. Gold was found to be completely unreactive towards Fomblin at any temperature. Reaction at room temperature was observed only in the case of the aluminum substrate, the most reactive towards Fomblin Z25 of the substrates studied. It was necessary to heat the 440C steel substrate to 190 degree C to induce decomposition of the fluid. The degradation of the fluid was indicated by the formation of a debris layer at the interface. This debris layer, composed of inorganic and organic reaction products, when completely formed, passivated the surface from further attack to the Fromblin on top. The tribologically induced reactions on 440C steel formed a debris layer of similar chemical characteristics to the thermally induced layer. In all cases, the degradation reaction resulted in preferential consumption of the difluoroformyl carbon (-OCF2O-)
Activation mechanisms in sodium-doped Silicon MOSFETs
We have studied the temperature dependence of the conductivity of a silicon
MOSFET containing sodium ions in the oxide above 20 K. We find the impurity
band resulting from the presence of charges at the silicon-oxide interface is
split into a lower and an upper band. We have observed activation of electrons
from the upper band to the conduction band edge as well as from the lower to
the upper band. A possible explanation implying the presence of Hubbard bands
is given.Comment: published in J. Phys. : Condens. Matte
- …
