897 research outputs found

    First-principles nonequilibrium Green's function approach to transient photoabsorption: Application to atoms

    Full text link
    We put forward a first-principle NonEquilibrium Green's Function (NEGF) approach to calculate the transient photoabsorption spectrum of optically thin samples. The method can deal with pump fields of arbitrary strength, frequency and duration as well as for overlapping and nonoverlapping pump and probe pulses. The electron-electron repulsion is accounted for by the correlation self-energy, and the resulting numerical scheme deals with matrices that scale quadratically with the system size. Two recent experiments, the first on helium and the second on krypton, are addressed. For the first experiment we explain the bending of the Autler-Townes absorption peaks with increasing the pump-probe delay \t, and relate the bending to the thickness and density of the gas. For the second experiment we find that sizable spectral structures of the pump-generated admixture of Kr ions are fingerprints of {\em dynamical correlation} effects, and hence they cannot be reproduced by time-local self-energy approximations. Remarkably, the NEGF approach also captures the retardation of the absorption onset of Kr2+^{2+} with respect to Kr1+^{1+} as a function of \t.Comment: 13 pages, 8 captioned figure

    Charge dynamics in molecular junctions: Nonequilibrium Green's Function approach made fast

    Full text link
    Real-time Green's function simulations of molecular junctions (open quantum systems) are typically performed by solving the Kadanoff-Baym equations (KBE). The KBE, however, impose a serious limitation on the maximum propagation time due to the large memory storage needed. In this work we propose a simplified Green's function approach based on the Generalized Kadanoff-Baym Ansatz (GKBA) to overcome the KBE limitation on time, significantly speed up the calculations, and yet stay close to the KBE results. This is achieved through a twofold advance: first we show how to make the GKBA work in open systems and then construct a suitable quasi-particle propagator that includes correlation effects in a diagrammatic fashion. We also provide evidence that our GKBA scheme, although already in good agreement with the KBE approach, can be further improved without increasing the computational cost.Comment: 13 pages, 13 figure

    Equilibrium and time-dependent Josephson current in one-dimensional superconducting junctions

    Full text link
    We investigate the transport properties of a one-dimensional superconductor-normal metal-superconductor (S-N-S) system described within the tight-binding approximation. We compute the equilibrium dc Josephson current and the time-dependent oscillating current generated after the switch-on of a constant bias. In the first case an exact embedding procedure to calculate the Nambu-Gorkov Keldysh Green's function is employed and used to derive the continuum and bound states contributions to the dc current. A general formalism to obtain the Andreev bound states (ABS) of a normal chain connected to superconducting leads is also presented. We identify a regime in which all Josephson current is carried by the ABS and obtain an analytic formula for the current-phase relation in the limit of long chains. In the latter case the condition for perfect Andreev reflections is expressed in terms of the microscopic parameters of the model, showing a limitation of the so called wide-band-limit (WBL) approximation. When a finite bias is applied to the S-N-S junction we compute the exact time-evolution of the system by solving numerically the time-dependent Bogoliubov-deGennes equations. We provide a microscopic description of the electron dynamics not only inside the normal region but also in the superconductors, thus gaining more information with respect to WBL-based approaches. Our scheme allows us to study the ac regime as well as the transient dynamics whose characteristic time-scale is dictated by the velocity of multiple Andreev reflections

    VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature

    Full text link
    The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photosensor's range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission

    Correlated Nanoscopic Josephson Junctions

    Full text link
    We discuss correlated lattice models with a time-dependent potential across a barrier and show how to implement a Josephson-junction-like behavior. The pairing occurs by a correlation effect enhanced by the symmetry of the system. In order to produce the effect we need a mild distortion which causes avoided crossings in the many-body spectrum. The Josephson-like response involves a quasi-adiabatic evolution in the time-dependent field. Besides, we observe an inverse-Josephson (Shapiro) current by applying an AC bias; a supercurrent in the absence of electromotive force can also be excited. The qualitative arguments are supported by explicit exact solutions in prototype 5-atom clusters with on-site repulsion. These basic units are then combined in ring-shaped systems, where one of the units sits at a higher potential and works as a barrier. In this case the solution is found by mapping the low-energy Hamiltonian into an effective anisotropic Heisenberg chain. Once again, we present evidence for a superconducting flux quantization, i.e. a Josephson-junction-like behavior suggesting the build-up of an effective order parameter already in few-electron systems. Some general implications for the quantum theory of transport are also briefly discussed, stressing the nontrivial occurrence of asymptotic current oscillations for long times in the presence of bound states.Comment: 12 pages, 2 figures, to appear in J. Phys. - Cond. Ma

    Time-dependent quantum transport with superconducting leads: a discrete basis Kohn-Sham formulation and propagation scheme

    Get PDF
    In this work we put forward an exact one-particle framework to study nano-scale Josephson junctions out of equilibrium and propose a propagation scheme to calculate the time-dependent current in response to an external applied bias. Using a discrete basis set and Peierls phases for the electromagnetic field we prove that the current and pairing densities in a superconducting system of interacting electrons can be reproduced in a non-interacting Kohn-Sham (KS) system under the influence of different Peierls phases {\em and} of a pairing field. An extended Keldysh formalism for the non-equilibrium Nambu-Green's function (NEGF) is then introduced to calculate the short- and long-time response of the KS system. The equivalence between the NEGF approach and a combination of the static and time-dependent Bogoliubov-deGennes (BdG) equations is shown. For systems consisting of a finite region coupled to N{\cal N} superconducting semi-infinite leads we numerically solve the static BdG equations with a generalized wave-guide approach and their time-dependent version with an embedded Crank-Nicholson scheme. To demonstrate the feasibility of the propagation scheme we study two paradigmatic models, the single-level quantum dot and a tight-binding chain, under dc, ac and pulse biases. We provide a time-dependent picture of single and multiple Andreev reflections, show that Andreev bound states can be exploited to generate a zero-bias ac current of tunable frequency, and find a long-living resonant effect induced by microwave irradiation of appropriate frequency.Comment: 20 pages, 9 figures, published versio

    W=0 pairing in Hubbard and related models of low-dimensional superconductors

    Full text link
    Lattice Hamiltonians with on-site interaction WW have W=0 solutions, that is, many-body {\em singlet} eigenstates without double occupation. In particular, W=0 pairs give a clue to understand the pairing force in repulsive Hubbard models. These eigenstates are found in systems with high enough symmetry, like the square, hexagonal or triangular lattices. By a general theorem, we propose a systematic way to construct all the W=0 pairs of a given Hamiltonian. We also introduce a canonical transformation to calculate the effective interaction between the particles of such pairs. In geometries appropriate for the CuO2_{2} planes of cuprate superconductors, armchair Carbon nanotubes or Cobalt Oxides planes, the dressed pair becomes a bound state in a physically relevant range of parameters. We also show that W=0 pairs quantize the magnetic flux like superconducting pairs do. The pairing mechanism breaks down in the presence of strong distortions. The W=0 pairs are also the building blocks for the antiferromagnetic ground state of the half-filled Hubbard model at weak coupling. Our analytical results for the 4×44\times 4 Hubbard square lattice, compared to available numerical data, demonstrate that the method, besides providing intuitive grasp on pairing, also has quantitative predictive power. We also consider including phonon effects in this scenario. Preliminary calculations with small clusters indicate that vector phonons hinder pairing while half-breathing modes are synergic with the W=0 pairing mechanism both at weak coupling and in the polaronic regime.Comment: 42 pages, Topical Review to appear in Journal of Physics C: Condensed Matte

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments

    W=0 Pairing in (N,N)(N,N) Carbon Nanotubes away from Half Filling

    Full text link
    We use the Hubbard Hamiltonian HH on the honeycomb lattice to represent the valence bands of carbon single-wall (N,N)(N,N) nanotubes. A detailed symmetry analysis shows that the model allows W=0 pairs which we define as two-body singlet eigenstates of HH with vanishing on-site repulsion. By means of a non-perturbative canonical transformation we calculate the effective interaction between the electrons of a W=0 pair added to the interacting ground state. We show that the dressed W=0 pair is a bound state for resonable parameter values away from half filling. Exact diagonalization results for the (1,1) nanotube confirm the expectations. For (N,N)(N,N) nanotubes of length ll, the binding energy of the pair depends strongly on the filling and decreases towards a small but nonzero value as ll \to \infty. We observe the existence of an optimal doping when the number of electrons per C atom is in the range 1.2÷\div1.3, and the binding energy is of the order of 0.1 ÷\div 1 meV.Comment: 16 pages, 6 figure
    corecore