275 research outputs found
The Keplerian orbit of G2
We give an update of the observations and analysis of G2 - the gaseous red
emission-line object that is on a very eccentric orbit around the Galaxy's
central black hole and predicted to come within 2400 Rs in early 2014. During
2013, the laser guide star adaptive optics systems on the W. M. Keck I and II
telescopes were used to obtain three epochs of spectroscopy and imaging at the
highest spatial resolution currently possible in the near-IR. The updated
orbital solution derived from radial velocities in addition to Br-Gamma line
astrometry is consistent with our earlier estimates. Strikingly, even ~6 months
before pericenter passage there is no perceptible deviation from a Keplerian
orbit. We furthermore show that a proposed "tail" of G2 is likely not
associated with it but is rather an independent gas structure. We also show
that G2 does not seem to be unique, since several red emission-line objects can
be found in the central arcsecond. Taken together, it seems more likely that G2
is ultimately stellar in nature, although there is clearly gas associated with
it.Comment: Proceedings of IAU Symposium #303, "The Galactic Center: Feeding and
Feedback in a Normal Galactic Nucleus"; 2013 September 30 - October 4, Santa
Fe New Mexico (USA
3D stellar kinematics at the Galactic center: measuring the nuclear star cluster spatial density profile, black hole mass, and distance
We present 3D kinematic observations of stars within the central 0.5 pc of
the Milky Way nuclear star cluster using adaptive optics imaging and
spectroscopy from the Keck telescopes. Recent observations have shown that the
cluster has a shallower surface density profile than expected for a dynamically
relaxed cusp, leading to important implications for its formation and
evolution. However, the true three dimensional profile of the cluster is
unknown due to the difficulty in de-projecting the stellar number counts. Here,
we use spherical Jeans modeling of individual proper motions and radial
velocities to constrain for the first time, the de-projected spatial density
profile, cluster velocity anisotropy, black hole mass (), and
distance to the Galactic center () simultaneously. We find that the inner
stellar density profile of the late-type stars, to
have a power law slope , much more shallow than
the frequently assumed Bahcall Wolf slope of . The measured
slope will significantly affect dynamical predictions involving the cluster,
such as the dynamical friction time scale. The cluster core must be larger than
0.5 pc, which disfavors some scenarios for its origin. Our measurement of
and
kpc is consistent with that derived from stellar
orbits within 1 of Sgr A*. When combined with the orbit of
S0-2, the uncertainty on is reduced by 30% ( kpc).
We suggest that the MW NSC can be used in the future in combination with
stellar orbits to significantly improve constraints on .Comment: 7 pages, 3 figures, 2 tables, ApJL accepte
Keck Observations of the Galactic Center Source G2: Gas Cloud or Star?
We present new observations and analysis of G2—the intriguing red emission-line object which is quickly approaching the Galaxy's central black hole. The observations were obtained with the laser guide star adaptive optics systems on the W. M. Keck I and II telescopes (2006-2012) and include spectroscopy (R ~ 3600) centered on the hydrogen Brγ line as well as K' (2.1 μm) and L' (3.8 μm) imaging. Analysis of these observations shows the Brγ line emission has a positional offset from the L' continuum. This offset is likely due to background source confusion at L'. We therefore present the first orbital solution derived from Brγ line astrometry, which, when coupled with radial velocity measurements, results in a later time of closest approach (2014.21 ± 0.14), closer periastron (130 AU, 1600 R_s), and higher eccentricity (0.9814 ± 0.0060) compared to a solution using L' astrometry. It is shown that G2 has no K' counterpart down to K' ~ 20 mag. G2's L' continuum and the Brγ line emission appears unresolved in almost all epochs, which implies that the bulk of the emission resides in a compact region. The observations altogether suggest that while G2 has a gaseous component that is tidally interacting with the central black hole, there is likely a central star providing the self-gravity necessary to sustain the compact nature of this object
Recommended from our members
DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY
An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional streambed and floodplain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and RReactor cooling water effluent canal systems, PAR Pond (including Pond C) and the floodplain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 75.5 Ci, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data
The Galactic Center Black Hole Laboratory
The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*)
shows flare emission from the millimeter to the X-ray domain. A detailed
analysis of the infrared light curves allows us to address the accretion
phenomenon in a statistical way. The analysis shows that the near-infrared
flare amplitudes are dominated by a single state power law, with the low states
in SgrA* limited by confusion through the unresolved stellar background. There
are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO
is one of them. Its nature is unclear. It may be comparable to similar stellar
dusty sources in the region or may consist predominantly of gas and dust. In
this case a particularly enhanced accretion activity onto SgrA* may be expected
in the near future. Here the interpretation of recent data and ongoing
observations are discussed.Comment: 30 pages - 7 figures - accepted for publication by Springer's
"Fundamental Theories of Physics" series; summarizing GC contributions of 2
conferences: 'Equations of Motion in Relativistic Gravity' at the
Physikzentrum Bad Honnef, Bad Honnef, Germany, (Feb. 17-23, 2013) and the
COST MP0905 'The Galactic Center Black Hole Laboratory' Granada, Spain (Nov.
19 - 22, 2013
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Recommended from our members
Computation Of The Residual Radionuclide Activity Within Three Natural Waterways At The Savannah River Site
In 2010 a Composite Analysis (CA) of the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS) was completed. This investigation evaluated the dose impact of the anticipated SRS End State residual sources of radionuclides to offsite members of the public. Doses were assessed at the locations where SRS site streams discharge into the Savannah River at the perimeter of the SRS. Although the model developed to perform this computation indicated that the dose constraint of 0.3 mSv/yr (30 mrem/yr), associated with CA, was not approached at the Points of Assessment (POAs), a significant contribution to the total computed dose was derived from the radionuclides (primarily Cs-137) bound-up in the soil and sediment of the drainage corridors of several SRS streams. DOE’s Low Level Waste Federal Review Group (LFRG) reviewed the 2010 CA and identified several items to be addressed in the SRS Maintenance Program. One of the items recognized Cs-137 in the Lower Three Runs (LTR) Integrator Operable Unit (IOU), as a significant CA dose driver. The item made the recommendation that SRS update the estimated radionuclide inventory, including Cs-137, in the LTR IOU. That initial work has been completed and its radionuclide inventory refined. There are five additional streams at SRS and the next phase of the response to the LFRG concern was to obtain a more accurate inventory and distribution of radionuclides in three of those streams, Fourmile Branch (FMB), Pen Branch (PB) and Steel Creek (SC). Each of these streams is designated as an IOU, which are defined for the purpose of this investigation as the surface water bodies and associated wetlands, including the channel sediment, floodplain sed/soil, and related biota. If present, radionuclides associated with IOUs are adsorbed to the streambed sediment and soils of the shallow floodplains that lie immediately adjacent to stream channels. The scope of this effort included the evaluation of any previous sampling and analysis data that had been collected for various SRS investigations, as well as the additional streambed and floodplain sampling and analysis data acquired more recently as part of the ongoing SRS IOU program, and associated specifically with the FMB, PB, and SC IOUs. Samples have been acquired along the waterways, within the stream channels themselves and in the adjacent floodplain zones. While Cs-137 is the most significant and abundant radionuclide associated with the SRS waterways, it is not the only radionuclide, hence work was conducted to evaluate all radionuclides present
Recommended from our members
US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges
On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns
What explains rare and conspicuous colours in a snail? A test of time-series data against models of drift, migration or selection
It is intriguing that conspicuous colour morphs of a prey species may be maintained at low frequencies alongside cryptic morphs. Negative frequency-dependent selection by predators using search images ('apostatic selection') is often suggested without rejecting alternative explanations. Using a maximum likelihood approach we fitted predictions from models of genetic drift, migration, constant selection, heterozygote advantage or negative frequency-dependent selection to time-series data of colour frequencies in isolated populations of a marine snail (Littorina saxatilis), re-established with perturbed colour morph frequencies and followed for >20 generations. Snails of conspicuous colours (white, red, banded) are naturally rare in the study area (usually <10%) but frequencies were manipulated to levels of ~50% (one colour per population) in 8 populations at the start of the experiment in 1992. In 2013, frequencies had declined to ~15-45%. Drift alone could not explain these changes. Migration could not be rejected in any population, but required rates much higher than those recorded. Directional selection was rejected in three populations in favour of balancing selection. Heterozygote advantage and negative frequency-dependent selection could not be distinguished statistically, although overall the results favoured the latter. Populations varied idiosyncratically as mild or variable colour selection (3-11%) interacted with demographic stochasticity, and the overall conclusion was that multiple mechanisms may contribute to maintaining the polymorphisms.Heredity advance online publication, 21 September 2016; doi:10.1038/hdy.2016.77
- …
