7,826 research outputs found

    Slow energy relaxation and localization in 1D lattices

    Full text link
    We investigate the energy relaxation process produced by thermal baths at zero temperature acting on the boundary atoms of chains of classical anharmonic oscillators. Time-dependent perturbation theory allows us to obtain an explicit solution of the harmonic problem: even in such a simple system nontrivial features emerge from the interplay of the different decay rates of Fourier modes. In particular, a crossover from an exponential to an inverse-square-root law occurs on a time scale proportional to the system size NN. A further crossover back to an exponential law is observed only at much longer times (of the order N3N^3). In the nonlinear chain, the relaxation process is initially equivalent to the harmonic case over a wide time span, as illustrated by simulations of the β\beta Fermi-Pasta-Ulam model. The distinctive feature is that the second crossover is not observed due to the spontaneous appearance of breathers, i.e. space-localized time-periodic solutions, that keep a finite residual energy in the lattice. We discuss the mechanism yielding such solutions and also explain why it crucially depends on the boundary conditions.Comment: 16 pages, 6 figure

    Cooling nonlinear lattices toward localisation

    Full text link
    We describe the energy relaxation process produced by surface damping on lattices of classical anharmonic oscillators. Spontaneous emergence of localised vibrations dramatically slows down dissipation and gives rise to quasi-stationary states where energy is trapped in the form of a gas of weakly interacting discrete breathers. In one dimension (1D), strong enough on--site coupling may yield stretched--exponential relaxation which is reminiscent of glassy dynamics. We illustrate the mechanism generating localised structures and discuss the crucial role of the boundary conditions. For two--dimensional (2D) lattices, the existence of a gap in the breather spectrum causes the localisation process to become activated. A statistical analysis of the resulting quasi-stationary state through the distribution of breathers' energies yield information on their effective interactions.Comment: 10 pages, 11 figure

    Discrete Breathers in a Realistic Coarse-Grained Model of Proteins

    Full text link
    We report the results of molecular dynamics simulations of an off-lattice protein model featuring a physical force-field and amino-acid sequence. We show that localized modes of nonlinear origin (discrete breathers) emerge naturally as continuations of a subset of high-frequency normal modes residing at specific sites dictated by the native fold. In the case of the small β\beta-barrel structure that we consider, localization occurs on the turns connecting the strands. At high energies, discrete breathers stabilize the structure by concentrating energy on few sites, while their collapse marks the onset of large-amplitude fluctuations of the protein. Furthermore, we show how breathers develop as energy-accumulating centres following perturbations even at distant locations, thus mediating efficient and irreversible energy transfers. Remarkably, due to the presence of angular potentials, the breather induces a local static distortion of the native fold. Altogether, the combination of this two nonlinear effects may provide a ready means for remotely controlling local conformational changes in proteins.Comment: Submitted to Physical Biolog

    Energy transfer in nonlinear network models of proteins

    Full text link
    We investigate how nonlinearity and topological disorder affect the energy relaxation of local kicks in coarse-grained network models of proteins. We find that nonlinearity promotes long-range, coherent transfer of substantial energy to specific, functional sites, while depressing transfer to generic locations. Remarkably, transfer can be mediated by the self-localization of discrete breathers at distant locations from the kick, acting as efficient energy-accumulating centers.Comment: 4 pages, 3 figure

    New insight into cataract formation -- enhanced stability through mutual attraction

    Get PDF
    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and non-monotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let

    Highly nonlinear dynamics in a slowly sedimenting colloidal gel

    Full text link
    We use a combination of original light scattering techniques and particles with unique optical properties to investigate the behavior of suspensions of attractive colloids under gravitational stress, following over time the concentration profile, the velocity profile, and the microscopic dynamics. During the compression regime, the sedimentation velocity grows nearly linearly with height, implying that the gel settling may be fully described by a (time-dependent) strain rate. We find that the microscopic dynamics exhibit remarkable scaling properties when time is normalized by strain rate, showing that the gel microscopic restructuring is dominated by its macroscopic deformation.Comment: Physical Review Letters (2011) xxx

    The IR-Completion of Gravity: What happens at Hubble Scales?

    Full text link
    We have recently proposed an "Ultra-Strong" version of the Equivalence Principle (EP) that is not satisfied by standard semiclassical gravity. In the theory that we are conjecturing, the vacuum expectation value of the (bare) energy momentum tensor is exactly the same as in flat space: quartically divergent with the cut-off and with no spacetime dependent (subleading) ter ms. The presence of such terms seems in fact related to some known difficulties, such as the black hole information loss and the cosmological constant problem. Since the terms that we want to get rid of are subleading in the high-momentum expansion, we attempt to explore the conjectured theory by "IR-completing" GR. We consider a scalar field in a flat FRW Universe and isolate the first IR-correction to its Fourier modes operators that kills the quadratic (next to leading) time dependent divergence of the stress energy tensor VEV. Analogously to other modifications of field operators that have been proposed in the literature (typically in the UV), the present approach seems to suggest a breakdown (here, in the IR, at large distances) of the metric manifold description. We show that corrections to GR are in fact very tiny, become effective at distances comparable to the inverse curvature and do not contain any adjustable parameter. Finally, we derive some cosmological implications. By studying the consistency of the canonical commutation relations, we infer a correction to the distance between two comoving observers, which grows as the scale factor only when small compared to the Hubble length, but gets relevant corrections otherwise. The corrections to cosmological distance measures are also calculable and, for a spatially flat matter dominated Universe, go in the direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde

    Equilibrium cluster phases and low-density arrested disordered states: The role of short-range attraction and long-range repulsion

    Full text link
    We study a model in which particles interact with short-ranged attractive and long-ranged repulsive interactions, in an attempt to model the equilibrium cluster phase recently discovered in sterically stabilized colloidal systems in the presence of depletion interactions. At low packing fraction particles form stable equilibrium clusters which act as building blocks of a cluster fluid. We study the possibility that cluster fluids generate a low-density disordered arrested phase, a gel, via a glass transition driven by the repulsive interaction. In this model the gel formation is formally described with the same physics of the glass formation.Comment: RevTeX4, 4 pages, 4 eps figure
    corecore