2,481 research outputs found
High-sensitivity optical measurement of mechanical Brownian motion
We describe an experiment in which a laser beam is sent into a high-finesse
optical cavity with a mirror coated on a mechanical resonator. We show that the
reflected light is very sensitive to small mirror displacements. We have
observed the Brownian motion of the resonator with a very high sensitivity.Comment: 4 pages, 4 figures, RevTe
Quantum engineering of squeezed states for quantum communication and metrology
We report the experimental realization of squeezed quantum states of light,
tailored for new applications in quantum communication and metrology. Squeezed
states in a broad Fourier frequency band down to 1 Hz has been observed for the
first time. Nonclassical properties of light in such a low frequency band is
required for high efficiency quantum information storage in electromagnetically
induced transparency (EIT) media. The states observed also cover the frequency
band of ultra-high precision laser interferometers for gravitational wave
detection and can be used to reach the regime of quantum non-demolition
interferometry. And furthermore, they cover the frequencies of motions of
heavily macroscopic objects and might therefore support the attempts to observe
entanglement in our macroscopic world.Comment: 12 pages, 3 figure
A micropillar for cavity optomechanics
We present a new micromechanical resonator designed for cavity optomechanics.
We have used a micropillar geometry to obtain a high-frequency mechanical
resonance with a low effective mass and a very high quality factor. We have
coated a 60-m diameter low-loss dielectric mirror on top of the pillar and
are planning to use this micromirror as part of a high-finesse Fabry-Perot
cavity, to laser cool the resonator down to its quantum ground state and to
monitor its quantum position fluctuations by quantum-limited optical
interferometry
Cooling of a mirror by radiation pressure
We describe an experiment in which a mirror is cooled by the radiation
pressure of light. A high-finesse optical cavity with a mirror coated on a
mechanical resonator is used as an optomechanical sensor of the Brownian motion
of the mirror. A feedback mechanism controls this motion via the radiation
pressure of a laser beam reflected on the mirror. We have observed either a
cooling or a heating of the mirror, depending on the gain of the feedback loop.Comment: 4 pages, 6 figures, RevTe
2D photonic-crystal optomechanical nanoresonator
We present the optical optimization of an optomechanical device based on a
suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based
on a 2D photonic-crystal geometry. We first identify by numerical simulation a
set of geometrical parameters providing a reflectivity higher than 99.8 % over
a 50-nm span. We then study the limitations induced by the finite value of the
optical waist and lateral size of the NWG pattern using different numerical
approaches. The NWG grating, pierced in a suspended InP 265 nm-thick membrane,
is used to form a compact microcavity involving the suspended nano-membrane as
end mirror. The resulting cavity has a waist size smaller than 10 m and a
finesse in the 200 range. It is used to probe the Brownian motion of the
mechanical modes of the nanomembrane
Entangling two Bose Einstein condensates in a double cavity system
We propose a scheme to transfer the quantum state of light fields to the
collective density excitations of a Bose Einstein condensate (BEC) in a cavity.
This scheme allows to entangle two BECs in a double cavity setup by
transferring the quantum entanglement of two light fields produced from a
nondegenerate parametric amplifier (NOPA) to the collective density excitations
of the two BECs. An EPR state of the collective density excitations can be
created by a judicious choice of the system parameters.Comment: 3 figure
Experimental measurement of photothermal effect in Fabry-Perot cavities
We report the experimental observation of the photothermal effect. The
measurements are performed by modulating the laser power absorbed by the
mirrors of two high-finesse Fabry-Perot cavities. The results are very well
described by a recently proposed theoretical model [M. Cerdonio, L. Conti, A.
Heidmann and M. Pinard, Phys. Rev. D 63 (2001) 082003], confirming the
correctness of such calculations. Our observations and quantitative
characterization of the photothermal effect demonstrate its critical importance
for high sensitivity interferometric displacement measurements, as those
necessary for gravitational wave detection.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Optimized quantum nondemolition measurement of a field quadrature
We suggest an interferometric scheme assisted by squeezing and linear
feedback to realize the whole class of field-quadrature quantum nondemolition
measurements, from Von Neumann projective measurement to fully non-destructive
non-informative one. In our setup, the signal under investigation is mixed with
a squeezed probe in an interferometer and, at the output, one of the two modes
is revealed through homodyne detection. The second beam is then
amplitude-modulated according to the outcome of the measurement, and finally
squeezed according to the transmittivity of the interferometer. Using strongly
squeezed or anti-squeezed probes respectively, one achieves either a projective
measurement, i.e. homodyne statistics arbitrarily close to the intrinsic
quadrature distribution of the signal, and conditional outputs approaching the
corresponding eigenstates, or fully non-destructive one, characterized by an
almost uniform homodyne statistics, and by an output state arbitrarily close to
the input signal. By varying the squeezing between these two extremes, or
simply by tuning the internal phase-shift of the interferometer, the whole set
of intermediate cases can also be obtained. In particular, an optimal quantum
nondemolition measurement of quadrature can be achieved, which minimizes the
information gain versus state disturbance trade-off
High flux polarized gamma rays production: first measurements with a four-mirror cavity at the ATF
The next generation of e+/e- colliders will require a very intense flux of
gamma rays to allow high current polarized positrons to be produced. This can
be achieved by converting polarized high energy photons in polarized pairs into
a target. In that context, an optical system consisting of a laser and a
four-mirror passive Fabry-Perot cavity has recently been installed at the
Accelerator Test Facility (ATF) at KEK to produce a high flux of polarized
gamma rays by inverse Compton scattering. In this contribution, we describe the
experimental system and present preliminary results. An ultra-stable
four-mirror non planar geometry has been implemented to ensure the polarization
of the gamma rays produced. A fiber amplifier is used to inject about 10W in
the high finesse cavity with a gain of 1000. A digital feedback system is used
to keep the cavity at the length required for the optimal power enhancement.
Preliminary measurements show that a flux of about /s with
an average energy of about 24 MeV was generated. Several upgrades currently in
progress are also described
Titania-doped tantala/silica coatings for gravitational-wave detection
Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO2 to Ta2O5 in Ta2O5/SiO2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO2-doped Ta2O5/SiO2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors
- …
