457 research outputs found
Structure of phytoplankton (Continuous Plankton Recorder and SeaWiFS) and impact of climate in the Northwest Atlantic Shelves
International audienceAll marine organisms are affected to some extent by the movement and thermal properties of oceanic currents. However phytoplankton, because of its small size is most directly coupled to the physical environment. The intense hydrodynamic activity observed in the Northwest Atlantic Shelves Province makes this region especially intriguing from the point of view of physical-biological interactions. In the present work, remote sensed data of Sea Surface Height (SSH) anomalies, Sea-surface chlorophyll a concentrations (SeaWiFS), and Sea Surface Temperature (SST) are used to complement the Continuous Plankton Recorder (CPR) survey that continuously sampled a route between Norfolk (Virginia, USA; 39° N, 71° W) and Argentia (Newfoundland; 47° N, 54° W) over the period 1995?1998. Over this period, we examined physical structures (i.e. SST and SSH) and climatic forcing associated with space-time phytoplankton structure. Along this route, the phytoplankton structures were mainly impacted by the changes in surface flow along the Scotian Shelf rather than significantly influenced by the mesoscale features of the Gulf Stream. These changes in water mass circulation caused a drop in temperature and salinity along the Scotian Shelf that induced changes in phytoplankton and zooplankton abundance
Decadal fluctuations in North Atlantic water inflow in the North Sea between 1958-2003: impacts on temperature and phytoplankton populations
The circulation of Atlantic water along the European continental slope, in particular the inflow into the North Sea, influences North Sea water characteristics with consequent changes in the environment affecting plankton community dynamics. The long-term effect of fluctuating oceanographic conditions on the North Sea pelagic ecosystem is assessed. It is shown that (i) there are similar regime shifts in the inflow through the northern North Sea and in Sea Surface Temperature, (ii) long-term phytoplankton trends are influenced by the inflow only in some North Sea regions, and (iii) the spatial variability in chemicophysical and biological parameters highlight the influence of smaller scale processes
The construction of exact multipolar equilibria of the two-dimensional Euler equations
Published versio
Changes in wave climate over the northwest European shelf seas during the last 12,000 years
Because of the depth attenuation of wave orbital velocity, wave-induced bed shear stress is much more sensitive to changes in total water depth than tidal-induced bed shear stress. The ratio between wave- and tidal-induced bed shear stress in many shelf sea regions has varied considerably over the recent geological past because of combined eustatic changes in sea level and isostatic adjustment. In order to capture the high-frequency nature of wind events, a two-dimensional spectral wave model is here applied at high temporal resolution to time slices from 12 ka BP to present using paleobathymetries of the NW European shelf seas. By contrasting paleowave climates and bed shear stress distributions with present-day conditions, the model results demonstrate that, in regions of the shelf seas that remained wet continuously over the last 12,000 years, annual root-mean-square (rms) and peak wave heights increased from 12 ka BP to present. This increase in wave height was accompanied by a large reduction in the annual rms wave- induced bed shear stress, primarily caused by a reduction in the magnitude of wave orbital velocity penetrating to the bed for increasing relative sea level. In regions of the shelf seas which remained wet over the last 12,000 years, the annual mean ratio of wave- to (M-2) tidal-induced bed shear stress decreased from 1 (at 12 ka BP) to its present-day value of 0.5. Therefore compared to present- day conditions, waves had a more important contribution to large-scale sediment transport processes in the Celtic Sea and the northwestern North Sea at 12 ka BP
Comets, historical records and vedic literature
A verse in book I of Rigveda mentions a cosmic tree with rope-like aerial
roots held up in the sky. Such an imagery might have ensued from the appearance
of a comet having `tree stem' like tail, with branched out portions resembling
aerial roots. Interestingly enough, a comet referred to as `heavenly tree' was
seen in 162 BC, as reported by old Chinese records. Because of weak surface
gravity, cometary appendages may possibly assume strange shapes depending on
factors like rotation, structure and composition of the comet as well as solar
wind pattern. Varahamihira and Ballala Sena listed several comets having
strange forms as reported originally by ancient seers such as Parashara,
Vriddha Garga, Narada and Garga.
Mahabharata speaks of a mortal king Nahusha who ruled the heavens when Indra,
king of gods, went into hiding. Nahusha became luminous and egoistic after
absorbing radiance from gods and seers. When he kicked Agastya (southern star
Canopus), the latter cursed him to become a serpent and fall from the sky. We
posit arguments to surmise that this Mahabharata lore is a mythical recounting
of a cometary event wherein a comet crossed Ursa Major, moved southwards with
an elongated tail in the direction of Canopus and eventually went out of sight.
In order to check whether such a conjecture is feasible, a preliminary list of
comets (that could have or did come close to Canopus) drawn from various
historical records is presented and discussed.Comment: This work was presented in the International Conference on Oriental
Astronomy held at IISER, Pune (India) during November, 201
Connectivity of larval stages of sedentary marine communities between hard substrates and offshore structures in the North Sea
Man-made structures including rigs, pipelines, cables, renewable energy devices, and ship wrecks, offer hard substrate in the largely soft-sediment environment of the North Sea. These structures become colonised by sedentary organisms and non-migratory reef fish, and form local ecosystems that attract larger predators including seals, birds, and fish. It is possible that these structures form a system of interconnected reef environments through the planktonic dispersal of the pelagic stages of organisms by ocean currents. Changes to the overall arrangement of hard substrate areas through removal or addition of individual man-made structures will affect the interconnectivity and could impact on the ecosystem. Here, we assessed the connectivity of sectors with oil and gas structures, wind farms, wrecks, and natural hard substrate, using a model that simulates the drift of planktonic stages of seven organisms with sedentary adult stages associated with hard substrate, applied to the period 2001–2010. Connectivity was assessed using a classification system designed to address the function of sectors in the network. Results showed a relatively stable overall spatial distribution of sector function but with distinct variations between species and years. The results are discussed in the context of decommissioning of oil and gas infrastructure in the North Sea
Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars
Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ13C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar’s environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa
- …
