351 research outputs found
Trapping of drops by wetting defects
Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidic
Low Friction Flows of Liquids at Nanopatterned Interfaces
With the recent important development of microfluidic systems,
miniaturization of flow devices has become a real challenge. Microchannels,
however, are characterized by a large surface to volume ratio, so that surface
properties strongly affect flow resistance in submicrometric devices. We
present here results showing that the concerted effect of wetting . properties
and surface roughness may considerably reduce friction of the fluid past the
boundaries. The slippage of the fluid at the channel boundaries is shown to be
drastically increased by using surfaces that are patterned at the nanometer
scale. This effect occurs in the regime where the surface pattern is partially
dewetted, in the spirit of the 'superhydrophobic' effects that have been
recently discovered at the macroscopic scales. Our results show for the first
time that, in contrast to the common belief, surface friction may be reduced by
surface roughness. They also open the possibility of a controlled realization
of the 'nanobubbles' that have long been suspected to play a role in
interfacial slippag
Surface Roughness and Effective Stick-Slip Motion
The effect of random surface roughness on hydrodynamics of viscous
incompressible liquid is discussed. Roughness-driven contributions to
hydrodynamic flows, energy dissipation, and friction force are calculated in a
wide range of parameters. When the hydrodynamic decay length (the viscous wave
penetration depth) is larger than the size of random surface inhomogeneities,
it is possible to replace a random rough surface by effective stick-slip
boundary conditions on a flat surface with two constants: the stick-slip length
and the renormalization of viscosity near the boundary. The stick-slip length
and the renormalization coefficient are expressed explicitly via the
correlation function of random surface inhomogeneities. The effective
stick-slip length is always negative signifying the effective slow-down of the
hydrodynamic flows by the rough surface (stick rather than slip motion). A
simple hydrodynamic model is presented as an illustration of these general
hydrodynamic results. The effective boundary parameters are analyzed
numerically for Gaussian, power-law and exponentially decaying correlators with
various indices. The maximum on the frequency dependence of the dissipation
allows one to extract the correlation radius (characteristic size) of the
surface inhomogeneities directly from, for example, experiments with torsional
quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure
Simulations of extensional flow in microrheometric devices
We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels
Load carrying capacity of a heterogeneous surface bearing
It has been shown before that liquids can slip at a solid boundary, which prompted the idea that parallel-surfaces bearings can be achieved just by alternating slip and non-slip regions in the direction of fluid flow. The amount of slip at the wall depends on the surface tension at the liquid–solid interface, which in turn depends on the chemical state of the surface and its roughness. In the present study a heterogeneous surface was obtained by coating half of a circular glass disc with a coating repellant to glycerol. A rotating glass disc was placed at a known/calibrated distance and the gap was filled with glycerol. With the mobile surface moving from the direction of slip to non-slip region it can be theoretically shown that a pressure build up can be achieved. The pressure gradient in the two regions is constant, similar to that in a Rayleigh step bearing, with the maximum pressure at the separation line. The heterogeneous disc was placed on a holder supported by a load cell thus the force generated by this pressure increase can be measured accurately. Tests were carried out at different sliding speeds and gaps and the load carried was measured and subsequently compared with theoretical calculations. This allowed the slip coefficient to be evaluated
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. VI: The Sixth Year (2013-2014)
Continuing the project described by Kato et al. (2009, PASJ, 61, S395,
arXiv:0905.1757), we collected times of superhump maxima for 56 SU UMa-type
dwarf novae mainly observed during the 2013-2014 season and characterized these
objects. We detected negative superhumps in VW Hyi and indicated that the low
number of normal outbursts in some supercycle can be interpreted as a result of
the disk tilt. This finding, combined with the Kepler observation of V1504 Cyg
and V344 Lyr, suggests that the disk tilt is responsible for modulating the
outburst pattern in SU UMa-type dwarf novae. We also studied the deeply
eclipsing WZ Sge-type dwarf nova MASTER OT J005740.99+443101.5 and found
evidence of a sharp eclipse during the phase of early superhumps. The profile
can be reproduced by a combination of the eclipse of the axisymmetric disk and
the uneclipsed light source of early superhumps. This finding confirms the lack
of evince of a greatly enhanced hot spot during the early stage of WZ Sge-type
outburst. We detected growing (stage A) superhumps in MN Dra and give a
suggestion that some of SU UMa-type dwarf novae situated near the critical
condition of tidal instability may show long-lasting stage A superhumps. The
large negative period derivatives reported in such systems can be understood a
result of the combination of stage A and B superhumps. The WZ Sge-type dwarf
novae AL Com and ASASSN-13ck showed a long-lasting (plateau-type)
rebrightening. In the early phase of the rebrightening, both objects showed a
precursor-like outburst, suggesting that the long-lasting rebrightening is
triggered by a precursor outburst.Comment: 73 pages, 88 figures, accepted for publication in PAS
- …
