794 research outputs found

    Magnetization of small lead particles

    Full text link
    The magnetization of an ensemble of isolated lead grains of sizes ranging from below 6 nm to 1000 nm is measured. A sharp disappearance of Meissner effect with lowering of the grain size is observed for the smaller grains. This is a direct observation by magnetization measurement of the occurrence of a critical particle size for superconductivity, which is consistent with Anderson's criterion.Comment: 7 pages, 5 figures, Submitted to PR

    Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence

    Get PDF
    We evaluate a number of simple, one‐point phenomenological models for the decay of energy‐containing eddies in magnetohydrodynamic(MHD) and hydrodynamicturbulence. The MHDmodels include effects of cross helicity and Alfvénic couplings associated with a constant mean magnetic field, based on physical effects well‐described in the literature. The analytic structure of three separate MHDmodels is discussed. The single hydrodynamic model and several MHDmodels are compared against results from spectral‐method simulations. The hydrodynamic model phenomenology has been previously verified against experiments in wind tunnels, and certain experimentally determined parameters in the model are satisfactorily reproduced by the present simulation. This agreement supports the suitability of our numerical calculations for examining MHDturbulence, where practical difficulties make it more difficult to study physical examples. When the triple‐decorrelation time and effects of spectral anisotropy are properly taken into account, particular MHDmodels give decay rates that remain correct to within a factor of 2 for several energy‐halving times. A simple model of this type is likely to be useful in a number of applications in space physics, astrophysics, and laboratory plasma physics where the approximate effects of turbulence need to be included

    Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions

    Get PDF
    New generalized statistical methods to measure agreement between two maps at multiple-resolutions, where each cell in each map has a multinomial distribution among any number of categories, are presented. This methodology quantifies agreement between any two categorical maps, where either map uses fuzzy or crisp classification. The method measures the agreement at various resolutions by aggregating neighboring cells into an increasingly coarse grid. At each resolution, the method partitions the overall agreement into correct due to chance, correct due to quantity, correct due to location, error due to location, and error due to quantity. In addition, the method computes six statistics that are useful to interpret the differences between maps, and shows how these statistics change with resolution. This technique is particularly useful for characterizing land-cover change and for validating land-cover change models. For illustration, this paper applies these theoretical concepts to the validation of a land-use change model for Costa Rica

    Inservice for Elementary Teachers: Activities and Techniques to Motivate Readers

    Get PDF
    The purpose of this study is to provide an inservice course of study for teachers of children in grades one through six. The activities and techniques are designed to motivate children who are below grade level in reading and help them develop an interest in reading in the hope that reading may become a pleasure in their lives

    Ultrafast and Distinct Spin Dynamics in Magnetic Alloys

    Get PDF
    Controlling magnetic order on ultrashort timescales is crucial for engineering the next-generation magnetic devices that combine ultrafast data processing with ultrahigh-density data storage. An appealing scenario in this context is the use of femtosecond (fs) laser pulses as an ultrafast, external stimulus to fully set the orientation and the magnetization magnitude of a spin ensemble. Achieving such control on ultrashort timescales, e.g., comparable to the excitation event itself, remains however a challenge due to the lack of understanding the dynamical behavior of the key parameters governing magnetism: The elemental magnetic moments and the exchange interaction. Here, we investigate the fs laser-induced spin dynamics in a variety of multi-component alloys and reveal a dissimilar dynamics of the constituent magnetic moments on ultrashort timescales. Moreover, we show that such distinct dynamics is a general phenomenon that can be exploited to engineer new magnetic media with tailor-made, optimized dynamic properties. Using phenomenological considerations, atomistic modeling and time-resolved X-ray magnetic circular dichroism (XMCD), we demonstrate demagnetization of the constituent sub-lattices on significantly different timescales that depend on their magnetic moments and the sign of the exchange interaction. These results can be used as a “recipe” for manipulation and control of magnetization dynamics in a large class of magnetic materials

    Initial Sequence and Comparative Analysis of the Cat Genome

    Get PDF
    The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing ∼65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    Altering crystal growth and annealing in ice-templated scaffolds.

    Get PDF
    The potential applications of ice-templating porous materials are constantly expanding, especially as scaffolds for tissue engineering. Ice-templating, a process utilizing ice nucleation and growth within an aqueous solution, consists of a cooling stage (before ice nucleation) and a freezing stage (during ice formation). While heat release during cooling can change scaffold isotropy, the freezing stage, where ice crystals grow and anneal, determines the final size of scaffold features. To investigate the path of heat flow within collagen slurries during solidification, a series of ice-templating molds were designed with varying the contact area with the heat sink, in the form of the freeze drier shelf. Contact with the heat sink was found to be critical in determining the efficiency of the release of latent heat within the perspex molds. Isotropic collagen scaffolds were produced with pores which ranged from 90 μm up to 180 μm as the contact area decreased. In addition, low-temperature ice annealing was observed within the structures. After 20 h at -30 °C, conditions which mimic storage prior to lyophilization, scaffold architecture was observed to coarsen significantly. In future, ice-templating molds should consider not only heat conduction during the cooling phase of solidification, but the effects of heat flow during ice growth and annealing.The authors gratefully acknowledge the financial support of the Gates Cambridge Trust, the Newton Trust, and ERC Advanced Grant 320598 3D-E. A.H. held a Daphne Jackson Fellowship funded by the University of Cambridge.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10853-015-9343-

    Implications of using 2 m versus 30 m spatial resolution data for suburban residential land change modeling

    Get PDF
    This study assesses the advantages and disadvantages of using 2 m spatial resolution data versus 30 m resolution data for a simulation model of land-use and land-cover change (LUCC). The model projects LUCC from 2005 to 2055 in the town of Lynnfield, Massachusetts, USA. This article describes four scenario storylines and then projects land-use and land-cover under each of the four scenarios with 2 m data and again with 30 m data. The disagreement between the 2 m output and its corresponding 30 m output ranges between 5.7% and 11.0% of the town. The disagreement due to allocation over small distances is greater than the disagreement due to the quantity of new residential growth. The projected quantities of new residential land-use in 2055 differ between the two resolutions by 1% of the town, whereas the visual differences in the spatial allocations are distinct and substantial. The results for this case study show that 30 m resolution data provides several practical and theoretical advantages over 2 m resolution data, due mainly to the fact that the 30 m resolution data match more closely the size of the patches of change

    Methods to summarize change among land categories across time intervals

    Get PDF
    Time-series maps have become more detailed in terms of numbers of categories and time points. Our paper proposes methods for raster datasets where detailed analysis of all categorical transitions would be initially overwhelming. We create two measurements: Incidents and States. The former is the number of times a pixel’s category changes across time intervals; the latter is the number of categories that a pixel represents across time points. The combinations of Incidents and States summarize change trajectories. We also describe categorical transitions in terms of annual flow matrices, which quantify the additional information generated by intermediate time points within the temporal extent. Our approach summarizes change at the pixel and landscape levels in ways that communicate where and how categories transition over time. These methods are useful to detect hotspots of change and to consider whether the apparent changes are real or due to map error
    corecore