873 research outputs found
On the Average Comoving Number Density of Halos
I compare the numerical multiplicity function given in Yahagi, Nagashima &
Yoshii (2004) with the theoretical multiplicity function obtained by means of
the excursion set model and an improved version of the barrier shape obtained
in Del Popolo & Gambera (1998), which implicitly takes account of total angular
momentum acquired by the proto-structure during evolution and of a non-zero
cosmological constant. I show that the multiplicity function obtained in the
present paper, is in better agreement with Yahagi, Nagashima & Yoshii (2004)
simulations than other previous models (Sheth & Tormen 1999; Sheth, Mo & Tormen
2001; Sheth & Tormen 2002; Jenkins et al. 2001) and that differently from some
previous multiplicity function models (Jenkins et al. 2001; Yahagi, Nagashima &
Yoshii 2004) it was obtained from a sound theoretical background
Improvements in the M-T relation and mass function and the measured Omega_m through clusters evolution
In this paper, I revisit the constraints obtained by several authors
(Reichart et al. 1999; Eke et al. 1998; Henry 2000) on the estimated values of
Omega_m, n and sigma_8 in the light of recent theoretical developments: 1) new
theoretical mass functions (Sheth & Tormen 1999, Sheth, Mo & Tormen 1999, Del
Popolo 2002b); 2) a more accurate mass-temperature relation, also determined
for arbitrary Omega_m and Omega_{\Lambda} (Voit 2000, Pierpaoli et al. 2001,
Del Popolo 2002a). Firstly, using the quoted improvements, I re-derive an
expression for the X-ray Luminosity Function (XLF), similarly to Reichart et
al. (1999), and then I get some constraints to \Omega_m and n, by using the
ROSAT BCS and EMSS samples and maximum-likelihood analysis. Then I re-derive
the X-ray Temperature Function (XTF), similarly to Henry (2000) and Eke et al.
(1999), re-obtaining the constraints on Omega_m, n, sigma_8. Both in the case
of the XLF and XTF, the changes in the mass function and M-T relation produces
an increase in Omega_m of \simeq 20% and similar results in sigma_8 and n.Comment: 34 pages, 11 encapsulated figures. Accepted by Ap
Chandrasekhar's Dynamical Friction and non-extensive statistics
The motion of a point like object of mass passing through the background
potential of massive collisionless particles () suffers a steady
deceleration named dynamical friction. In his classical work, Chandrasekhar
assumed a Maxwellian velocity distribution in the halo and neglected the self
gravity of the wake induced by the gravitational focusing of the mass . In
this paper, by relaxing the validity of the Maxwellian distribution due to the
presence of long range forces, we derive an analytical formula for the
dynamical friction in the context of the -nonextensive kinetic theory. In
the extensive limiting case (), the classical Gaussian Chandrasekhar
result is recovered. As an application, the dynamical friction timescale for
Globular Clusters spiraling to the galactic center is explicitly obtained. Our
results suggest that the problem concerning the large timescale as derived by
numerical -body simulations or semi-analytical models can be understood as a
departure from the standard extensive Maxwellian regime as measured by the
Tsallis nonextensive -parameter.Comment: 16pp 5 figs, revised and extended version of arXiv:1202.1873 .
Accepted for publication by JCA
Secondary infall model and dark matter scaling relations in intermediate-redshift early-type galaxies
Scaling relations among dark matter (DM) and stellar quantities are a valuable tool to constrain formation scenarios and the evolution of galactic structures. However, most of the DM properties are actually not directly measured, but derived through model-dependent mass-mapping procedures. It is therefore crucial to adopt theoretically and observationally well founded models. We use here an updated version of the secondary infall model (SIM) to predict the halo density profile, taking into account the effects of angular momentum, dissipative friction and baryons collapse. The resulting family of halo profiles depends only on one parameter, the virial mass, and nicely fits the projected mass and aperture velocity dispersion of a sample of intermediate redshift lens galaxies. We derive DM-related quantities (namely the column density and the Newtonian acceleration) and investigate their correlations with stellar mass, luminosity, effective radius and virial mas
Secondary infall model and dark matter scaling relations in intermediate redshift early - type galaxies
Scaling relations among dark matter (DM) and stellar quantities are a
valuable tool to constrain formation scenarios and the evolution of galactic
structures. However, most of the DM properties are actually not directly
measured, but derived through model dependent mass mapping procedures. It is
therefore crucial to adopt theoretically and observationally well founded
models. We use here an updated version of the secondary infall model (SIM) to
predict the halo density profile, taking into account the effects of angular
momentum, dissipative friction and baryons collapse. The resulting family of
halo profiles depends on one parameter only, the virial mass, and nicely fits
the projected mass and aperture velocity dispersion of a sample of intermediate
redshift lens galaxies. We derive DM related quantities (namely the column
density and the Newtonian acceleration) and investigate their correlations with
stellar mass, luminosity, effective radius and virial mass.Comment: 15 pages, 3 figures, 2 tables, accepted for publication on MNRA
On the cosmological mass function theory
This paper provides, from one side, a review of the theory of the
cosmological mass function from a theoretical point of view, starting from the
seminal paper of Press & Shechter (1974) to the last developments (Del Popolo &
Gambera (1998, 1999), Sheth & Tormen 1999 (ST), Sheth, Mo & Tormen 2001 (ST1),
Jenkins et al. 2001 (J01), Shet & Tormen 2002 (ST2), Del Popolo 2002a, Yagi et
al. 2004 (YNY)), and from another side some improvements on the multiplicity
function models in literature. ...Comment: Astronomy Reports, in prin
Dynamical derivation of Bode's law
In a planetary or satellite system, idealized as n small bodies in initially
coplanar, concentric orbits around a large central body, obeying Newtonian
point-particle mechanics, resonant perturbations will cause dynamical evolution
of the orbital radii except under highly specific mutual relationships, here
derived analytically apparently for the first time. In particular, the most
stable situation is achieved (in this idealized model) only when each planetary
orbit is roughly twice as far from the Sun as the preceding one, as observed
empirically already by Titius (1766) and Bode (1778) and used in both the
discoveries of Uranus (1781) and the Asteroid Belt (1801). ETC.Comment: 27 page
Clinical and environmental distribution of legionella pneumophila in a university hospital in italy: efficacy of ultraviolet disinfection
The molecular epidemiology of Legionella pneumophila in the 'V. Monaldi' University Hospital was studied. Seven cases of nosocomial Legionnaires' disease were diagnosed between 1999 and 2003. Two clinical legionella strains obtained from two patients in the adult cardiac surgery unit (CSU) and 30 environmental legionella strains from the paediatric and adult CSUs, neonatal intensive care unit (NICU) and the cardiorespiratory intensive care unit (CR-ICU) were serotyped and genotyped. L. pneumophila serogroup 1/Philadelphia with an identical pulsed-field gel electrophoresis (PFGE) profile A was isolated from two patients in the adult CSU, and from three and one water samples taken in the adult CSU and the paediatric CSU, respectively, from 2001 to 2002. Furthermore, L. pneumophila serogroup 3 with an identical PFGE profile B was identified in 20 environmental strains from all wards, L. pneumophila serogroup 3 with PFGE profile C was identified in a single environmental strain from the CR-ICU, and non-pneumophila Legionella with identical PFGE profile D was identified in five environmental strains from the adult CSU, paediatric CSU and NICU. Ultraviolet irradiation was effective in disinfection of the hospital water supplies in the adult and paediatric CSUs contaminated by L. pneumophila clone associated with nosocomial Legionnaires' disease. In conclusion, these data demonstrate that two cases of nosocomial legionellosis were caused by the persistence of a single clone of L. pneumophila serogroup 1/Philadelphia in the hospital environment, and that disinfection by ultraviolet irradiation may represent an effective measure to prevent nosocomial Legionnaires' disease. © 2005 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved
Extended axion electrodynamics: Optical activity induced by nonstationary dark matter
We establish a new self-consistent Einstein-Maxwell-axion model based on the
Lagrangian, which is linear in the pseudoscalar (axion) field and its
four-gradient and includes the four-vector of macroscopic velocity of the axion
system as a whole. We consider extended equations of the axion electrodynamics,
modified gravity field equations, and discuss nonstationary effects in the
phenomenon of optical activity induced by axions.Comment: 6 pages, 0 figures, accepted for publication in the Journal
Gravitation and Cosmology, reported at the 14th Russian Gravitational
Conference (Ulyanovsk, 2011
- …
