1,283 research outputs found
Canonical forms for matrices of Saletan contractions
We show that each Saletan (linear) contraction can be realized, up to change
of bases of the initial and the target Lie algebras, by a matrix-function that
is completely defined by a partition of the dimension of Fitting component of
its value at the limit value of the contraction parameter. The codimension of
the Fitting component and this partition constitute the signature of the
Saletan contraction. We study Saletan contractions with Fitting component of
maximal dimension and trivial one-part partition. All contractions of such kind
in dimension three are completely classified.Comment: 10 pages, Proceedings of the Seventh International Workshop "Group
Analysis of Differential Equations and Integrable Systems" (GADEISVII), 15-19
June 2014, Larnaca, Cypru
Reduction Operators of Linear Second-Order Parabolic Equations
The reduction operators, i.e., the operators of nonclassical (conditional)
symmetry, of (1+1)-dimensional second order linear parabolic partial
differential equations and all the possible reductions of these equations to
ordinary differential ones are exhaustively described. This problem proves to
be equivalent, in some sense, to solving the initial equations. The ``no-go''
result is extended to the investigation of point transformations (admissible
transformations, equivalence transformations, Lie symmetries) and Lie
reductions of the determining equations for the nonclassical symmetries.
Transformations linearizing the determining equations are obtained in the
general case and under different additional constraints. A nontrivial example
illustrating applications of reduction operators to finding exact solutions of
equations from the class under consideration is presented. An observed
connection between reduction operators and Darboux transformations is
discussed.Comment: 31 pages, minor misprints are correcte
Computation of Invariants of Lie Algebras by Means of Moving Frames
A new purely algebraic algorithm is presented for computation of invariants
(generalized Casimir operators) of Lie algebras. It uses the Cartan's method of
moving frames and the knowledge of the group of inner automorphisms of each Lie
algebra. The algorithm is applied, in particular, to computation of invariants
of real low-dimensional Lie algebras. A number of examples are calculated to
illustrate its effectiveness and to make a comparison with the same cases in
the literature. Bases of invariants of the real solvable Lie algebras up to
dimension five, the real six-dimensional nilpotent Lie algebras and the real
six-dimensional solvable Lie algebras with four-dimensional nilradicals are
newly calculated and listed in tables.Comment: 17 pages, extended versio
Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification
We discuss the classical statement of group classification problem and some
its extensions in the general case. After that, we carry out the complete
extended group classification for a class of (1+1)-dimensional nonlinear
diffusion--convection equations with coefficients depending on the space
variable. At first, we construct the usual equivalence group and the extended
one including transformations which are nonlocal with respect to arbitrary
elements. The extended equivalence group has interesting structure since it
contains a non-trivial subgroup of non-local gauge equivalence transformations.
The complete group classification of the class under consideration is carried
out with respect to the extended equivalence group and with respect to the set
of all point transformations. Usage of extended equivalence and correct choice
of gauges of arbitrary elements play the major role for simple and clear
formulation of the final results. The set of admissible transformations of this
class is preliminary investigated.Comment: 25 page
Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem
The quasi-geostrophic two-layer model is of superior interest in dynamic
meteorology since it is one of the easiest ways to study baroclinic processes
in geophysical fluid dynamics. The complete set of point symmetries of the
two-layer equations is determined. An optimal set of one- and two-dimensional
inequivalent subalgebras of the maximal Lie invariance algebra is constructed.
On the basis of these subalgebras we exhaustively carry out group-invariant
reduction and compute various classes of exact solutions. Where possible,
reference to the physical meaning of the exact solutions is given. In
particular, the well-known baroclinic Rossby wave solutions in the two-layer
model are rediscovered.Comment: Extended version, 24 pages, 1 figur
- …
