1,853 research outputs found
Pressure-induced Spin-Peierls to Incommensurate Charge-Density-Wave Transition in the Ground State of TiOCl
The ground state of the spin-Peierls system TiOCl was probed using
synchrotron x-ray diffraction on a single-crystal sample at T = 6 K. We tracked
the evolution of the structural superlattice peaks associated with the
dimerized ground state as a function of pressure. The dimerization along the b
axis is rapidly suppressed in the vicinity of a first-order structural phase
transition at Pc = 13.1(1) GPa. The high-pressure phase is characterized by an
incommensurate charge density wave perpendicular to the original spin chain
direction. These results show that the electronic ground state undergoes a
fundamental change in symmetry, indicating a significant change in the
principal interactions.Comment: 5 pages, 4 figure
SO2 oxidation in supercooled droplets in the presence of O2
Sulphur dioxide oxidation in supercooled monodisperse droplets at T4213 7C was studied in the presence of oxygen. The SO2 concentration was found to range from 0.08 to 7.1 ppmv and the contact time between gases and droplets was
210 s. The experimental results showed that sulphate concentration due to SO2 oxidation is independent of temperature, i.e. the increase of SO2 solubility in the
liquid phase balances the rate constant decrease of the oxidation reaction. Following McKay’s kinetics (Atmos. Environ., 5 (1971) 7), we calculated the rate constant at
T4213 7C and the activation energy. A comparison was made between experimental S(VI) oxidation concentrations due to oxygen and theoretical oxidation values due to O3, H2O2 and oxygen in the presence of catalyzers (Fe31, Mn21)
Crystal dynamics and thermal properties of neptunium dioxide
We report an experimental and theoretical investigation of the lattice
dynamics and thermal properties of the actinide dioxide NpO. The
energy-wavevector dispersion relation for normal modes of vibration propagating
along the , , and high-symmetry lines in NpO at room
temperature has been determined by measuring the coherent one-phonon scattering
of X-rays from a 1.2 mg single-crystal specimen, the largest available
single crystal for this compound. The results are compared against ab initio
phonon dispersions computed within the first-principles density functional
theory in the generalized gradient approximation plus Hubbard correlation
(GGA+) approach, taking into account third-order anharmonicity effects in
the quasiharmonic approximation. Good agreement with the experiment is obtained
for calculations with an on-site Coulomb parameter eV and Hund's
exchange eV in line with previous electronic structure calculations.
We further compute the thermal expansion, heat capacity, thermal conductivity,
phonon linewidth, and thermal phonon softening, and compare with available
experiments. The theoretical and measured heat capacities are in close
agreement with another. About 27% of the calculated thermal conductivity is due
to phonons with energy higher than 25 meV ( 6 THz ), suggesting an
important role of high-energy optical phonons in the heat transport. The
simulated thermal expansion reproduces well the experimental data up to about
1000 K, indicating a failure of the quasiharmonic approximation above this
limit.Comment: 12 pages, 10 figure
Internal-strain mediated coupling between polar Bi and magnetic Mn ions in the defect-free quadruple-perovskite BiMnMnO
By means of neutron powder diffraction, we investigated the effect of the
polar Bi ion on the magnetic ordering of the Mn ions in
BiMnMnO, the counterpart with \textit{quadruple} perovskite
structure of the \textit{simple} perovskite BiMnO. The data are consistent
with a \textit{noncentrosymmetric} spacegroup which contrasts the
\textit{centrosymmetric} one previously reported for the isovalent and
isomorphic compound LaMnMnO, which gives evidence of a
Bi-induced polarization of the lattice. At low temperature, the two
Mn sublattices of the and sites order antiferromagnetically
(AFM) in an independent manner at 25 and 55 K, similarly to the case of
LaMnMnO. However, both magnetic structures of
BiMnMnO radically differ from those of LaMnMnO.
In BiMnMnO the moments of the sites form
an anti-body AFM structure, whilst the moments \textbf{M} of the
sites result from a large and \textit{uniform} modulation along the b-axis of the moments \textbf{M} in the
-plane. The modulation is strikingly correlated with the displacements of
the Mn ions induced by the Bi ions. Our analysis unveils a strong
magnetoelastic coupling between the internal strain created by the Bi
ions and the moment of the Mn ions in the sites. This is ascribed to
the high symmetry of the oxygen sites and to the absence of oxygen defects, two
characteristics of quadruple perovskites not found in simple ones, which
prevent the release of the Bi-induced strain through distortions or
disorder. This demonstrates the possibility of a large magnetoelectric coupling
in proper ferroelectrics and suggests a novel concept of internal strain
engineering for multiferroics design.Comment: 9 pages, 7 figures, 5 table
Correlation between Gamma-Ray bursts and Gravitational Waves
The cosmological origin of -ray bursts (GRBs) is now commonly
accepted and, according to several models for the central engine, GRB sources
should also emit at the same time gravitational waves bursts (GWBs). We have
performed two correlation searches between the data of the resonant
gravitational wave detector AURIGA and GRB arrival times collected in the BATSE
4B catalog. No correlation was found and an upper limit \bbox{} on the averaged amplitude of gravitational waves
associated with -ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.
Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature
We apply a feedback cooling technique to simultaneously cool the three
electromechanical normal modes of the ton-scale resonant-bar gravitational wave
detector AURIGA. The measuring system is based on a dc Superconducting Quantum
Interference Device (SQUID) amplifier, and the feedback cooling is applied
electronically to the input circuit of the SQUID. Starting from a bath
temperature of 4.2 K, we achieve a minimum temperature of 0.17 mK for the
coolest normal mode. The same technique, implemented in a dedicated experiment
at subkelvin bath temperature and with a quantum limited SQUID, could allow to
approach the quantum ground state of a kilogram-scale mechanical resonator.Comment: 4 pages, 4 figure
Networks of gravitational wave detectors and three figures of merit
This paper develops a general framework for studying the effectiveness of
networks of interferometric gravitational wave detectors and then uses it to
show that enlarging the existing LIGO-VIRGO network with one or more planned or
proposed detectors in Japan (LCGT), Australia, and India brings major benefits,
including much larger detection rate increases than previously thought... I
show that there is a universal probability distribution function (pdf) for
detected SNR values, which implies that the most likely SNR value of the first
detected event will be 1.26 times the search threshold. For binary systems, I
also derive the universal pdf for detected values of the orbital inclination,
taking into account the Malmquist bias; this implies that the number of
gamma-ray bursts associated with detected binary coalescences should be 3.4
times larger than expected from just the beaming fraction of the gamma burst.
Using network antenna patterns, I propose three figures of merit that
characterize the relative performance of different networks... Adding {\em any}
new site to the planned LIGO-VIRGO network can dramatically increase, by
factors of 2 to 4, the detected event rate by allowing coherent data analysis
to reduce the spurious instrumental coincident background. Moving one of the
LIGO detectors to Australia additionally improves direction-finding by a factor
of 4 or more. Adding LCGT to the original LIGO-VIRGO network not only improves
direction-finding but will further increase the detection rate over the
extra-site gain by factors of almost 2, partly by improving the network duty
cycle... Enlarged advanced networks could look forward to detecting three to
four hundred neutron star binary coalescences per year.Comment: 38 pages, 7 figures, 2 tables. Accepted for publication in Classical
and Quantum Gravit
The detection of Gravitational Waves
This chapter is concerned with the question: how do gravitational waves (GWs)
interact with their detectors? It is intended to be a theory review of the
fundamental concepts involved in interferometric and acoustic (Weber bar) GW
antennas. In particular, the type of signal the GW deposits in the detector in
each case will be assessed, as well as its intensity and deconvolution. Brief
reference will also be made to detector sensitivity characterisation, including
very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For
Proceedings of the ERE-2001 Conference (Madrid, September 2001
Initial operation of the International Gravitational Event Collaboration
The International Gravitational Event Collaboration, IGEC, is a coordinated
effort by research groups operating gravitational wave detectors working
towards the detection of millisecond bursts of gravitational waves. Here we
report on the current IGEC resonant bar observatory, its data analysis
procedures, the main properties of the first exchanged data set. Even though
the available data set is not complete, in the years 1997 and 1998 up to four
detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted
to the International Journal of Modern Physic
Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor
In this paper we provide a sufficient condition, in terms of only one of the
nine entries of the gradient tensor, i.e., the Jacobian matrix of the velocity
vector field, for the global regularity of strong solutions to the
three-dimensional Navier-Stokes equations in the whole space, as well as for
the case of periodic boundary conditions
- …
