481 research outputs found
Discrete analogue computing with rotor-routers
Rotor-routing is a procedure for routing tokens through a network that can
implement certain kinds of computation. These computations are inherently
asynchronous (the order in which tokens are routed makes no difference) and
distributed (information is spread throughout the system). It is also possible
to efficiently check that a computation has been carried out correctly in less
time than the computation itself required, provided one has a certificate that
can itself be computed by the rotor-router network. Rotor-router networks can
be viewed as both discrete analogues of continuous linear systems and
deterministic analogues of stochastic processes.Comment: To appear in Chaos Special Focus Issue on Intrinsic and Designed
Computatio
On the Red-Green-Blue Model
We experimentally study the red-green-blue model, which is a sytem of loops
obtained by superimposing three dimer coverings on offset hexagonal lattices.
We find that when the boundary conditions are ``flat'', the red-green-blue
loops are closely related to SLE_4 and double-dimer loops, which are the loops
formed by superimposing two dimer coverings of the cartesian lattice. But we
also find that the red-green-blue loops are more tightly nested than the
double-dimer loops. We also investigate the 2D minimum spanning tree, and find
that it is not conformally invariant.Comment: 4 pages, 7 figure
Using domain-independent problems for introducing formal methods
The key to the integration of formal methods into engineering practice is education. In teaching, domain-independent problems i.e., not requiring prior engineering background-offer many advantages.
Such problems are widely available, but this paper adds two dimensions that are lacking in typical solutions yet are crucial to formal methods: (i) the translation of informal statements into formal expressions; (ii) the role of formal calculation (including proofs) in exposing risks or misunderstandings and in discovering pathways to solutions.
A few example problems illustrate this: (a) a small logical one showing the importance of fully capturing informal statements; (b) a combinatorial one showing how, in going from "real-world" formulations to mathematical ones, formal methods can cover more aspects than classical mathematics, and a half-page formal program semantics suitable for beginners is presented as a support; (c) a larger one showing how a single problem can contain enough elements to serve as a Leitmotiv for all notational and reasoning issues in a complete introductory course.
An important final observation is that, in teaching formal methods, no approach can be a substitute for an open mind, as extreme mathphobia appears resistant to any motivation
Criminal narrative experience: relating emotions to offence narrative roles during crime commission
A neglected area of research within criminality has been that of the experience of the offence for the offender. The present study investigates the emotions and narrative roles that are experienced by an offender while committing a broad range of crimes and proposes a model of Criminal Narrative Experience (CNE). Hypotheses were derived from the Circumplex of Emotions (Russell, 1997), Frye (1957), Narrative Theory (McAdams, 1988) and its link with Investigative Psychology (Canter, 1994). The analysis was based on 120 cases. Convicted for a variety of crimes, incarcerated criminals were interviewed and the data were subjected to Smallest Space Analysis (SSA). Four themes of Criminal Narrative Experience (CNE) were identified: Elated Hero, Calm Professional, Distressed Revenger and Depressed Victim in line with the recent theoretical framework posited for Narrative Offence Roles (Youngs & Canter, 2012). The theoretical implications for understanding crime on the basis of the Criminal Narrative Experience (CNE) as well as practical implications are discussed
Functional relations for the six vertex model with domain wall boundary conditions
In this work we demonstrate that the Yang-Baxter algebra can also be employed
in order to derive a functional relation for the partition function of the six
vertex model with domain wall boundary conditions. The homogeneous limit is
studied for small lattices and the properties determining the partition
function are also discussed.Comment: 19 pages, v2: typos corrected, new section and appendix added. v3:
minor corrections, to appear in J. Stat. Mech
Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels
Monte Carlo algorithms often aim to draw from a distribution by
simulating a Markov chain with transition kernel such that is
invariant under . However, there are many situations for which it is
impractical or impossible to draw from the transition kernel . For instance,
this is the case with massive datasets, where is it prohibitively expensive to
calculate the likelihood and is also the case for intractable likelihood models
arising from, for example, Gibbs random fields, such as those found in spatial
statistics and network analysis. A natural approach in these cases is to
replace by an approximation . Using theory from the stability of
Markov chains we explore a variety of situations where it is possible to
quantify how 'close' the chain given by the transition kernel is to
the chain given by . We apply these results to several examples from spatial
statistics and network analysis.Comment: This version: results extended to non-uniformly ergodic Markov chain
Exact sampling from non-attractive distributions using summary states
Propp and Wilson's method of coupling from the past allows one to efficiently
generate exact samples from attractive statistical distributions (e.g., the
ferromagnetic Ising model). This method may be generalized to non-attractive
distributions by the use of summary states, as first described by Huber. Using
this method, we present exact samples from a frustrated antiferromagnetic
triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss
the advantages and limitations of the method of summary states for practical
sampling, paying particular attention to the slowing down of the algorithm at
low temperature. In particular, we show that such a slowing down can occur in
the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at
http://wol.ra.phy.cam.ac.uk/mackay/exac
On the partition function of the six-vertex model with domain wall boundary conditions
The six-vertex model on an square lattice with domain wall
boundary conditions is considered. A Fredholm determinant representation for
the partition function of the model is given. The kernel of the corresponding
integral operator is of the so-called integrable type, and involves classical
orthogonal polynomials. From this representation, a ``reconstruction'' formula
is proposed, which expresses the partition function as the trace of a suitably
chosen quantum operator, in the spirit of corner transfer matrix and vertex
operator approaches to integrable spin models.Comment: typos correcte
The arctic curve of the domain-wall six-vertex model
The problem of the form of the `arctic' curve of the six-vertex model with
domain wall boundary conditions in its disordered regime is addressed. It is
well-known that in the scaling limit the model exhibits phase-separation, with
regions of order and disorder sharply separated by a smooth curve, called the
arctic curve. To find this curve, we study a multiple integral representation
for the emptiness formation probability, a correlation function devised to
detect spatial transition from order to disorder. We conjecture that the arctic
curve, for arbitrary choice of the vertex weights, can be characterized by the
condition of condensation of almost all roots of the corresponding saddle-point
equations at the same, known, value. In explicit calculations we restrict to
the disordered regime for which we have been able to compute the scaling limit
of certain generating function entering the saddle-point equations. The arctic
curve is obtained in parametric form and appears to be a non-algebraic curve in
general; it turns into an algebraic one in the so-called root-of-unity cases.
The arctic curve is also discussed in application to the limit shape of
-enumerated (with ) large alternating sign matrices. In
particular, as the limit shape tends to a nontrivial limiting curve,
given by a relatively simple equation.Comment: 39 pages, 2 figures; minor correction
Refined Razumov-Stroganov conjectures for open boundaries
Recently it has been conjectured that the ground-state of a Markovian
Hamiltonian, with one boundary operator, acting in a link pattern space is
related to vertically and horizontally symmetric alternating-sign matrices
(equivalently fully-packed loop configurations (FPL) on a grid with special
boundaries).We extend this conjecture by introducing an arbitrary boundary
parameter. We show that the parameter dependent ground state is related to
refined vertically symmetric alternating-sign matrices i.e. with prescribed
configurations (respectively, prescribed FPL configurations) in the next to
central row.
We also conjecture a relation between the ground-state of a Markovian
Hamiltonian with two boundary operators and arbitrary coefficients and some
doubly refined (dependence on two parameters) FPL configurations. Our
conjectures might be useful in the study of ground-states of the O(1) and XXZ
models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure
- …
