400 research outputs found

    Hyperons in neutron stars and supernova cores

    Get PDF
    The properties of compact stars and their formation processes depend on many physical ingredients. The composition and the thermodynamics of the involved matter is one of them. We will investigate here uniform strongly interacting matter at densities and temperatures, where potentially other components than free nucleons appear such as hyperons, mesons or even quarks. In this paper we will put the emphasis on two aspects of stellar matter with non-nucleonic degrees of freedom. First, we will study the phase diagram of baryonic matter with strangeness, showing that the onset of hyperons, as that of quark matter, could be related to a very rich phase structure with a large density domain covered by phase coexistence. Second, we will investigate thermal effects on the equation of state (EoS), showing that they favor the appearance of non-nucleonic particles. We will finish by reviewing some recent results on the impact of non-nucleonic degrees freedom in compact star mergers and core-collapse events, where thermal effects cannot be neglected.Comment: 20 pages, 14 figures, contribution to the EPJA topical issue "Exotic matter in neutron stars

    Instanton picture of the spin tunneling in the Lipkin model

    Full text link
    A consistent theory of the ground state energy and its splitting due to the process of tunneling for the Lipkin model is presented. For the functional integral in terms of the spin coherent states for the partition function of the model we accurately calculate the trivial and the instanton saddle point contributions. We show that such calculation has to be perfomed very accurately taking into account the discrete nature of the functional integral. Such accurate consideration leads to finite corrections to a naive continous consideration. We present comparison with numerical calculation of the ground state energy and the tunneling splitting and with the results obtained by the quasiclassical method and get excellent agreement.Comment: REVTEX, 32 pages, 3 figure

    Cryoballoon or Radiofrequency Ablation for Atrial Fibrillation

    Get PDF

    Neutron star radii and crusts: uncertainties and unified equations of state

    Get PDF
    The uncertainties in neutron star (NS) radii and crust properties due to our limited knowledge of the equation of state (EOS) are quantitatively analysed. We first demonstrate the importance of a unified microscopic description for the different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core EOS based on models with different properties at nuclear matter saturation, the uncertainties can be as large as 30%\sim 30\% for the crust thickness and 4%4\% for the radius. Necessary conditions for causal and thermodynamically consistent matchings between the core and the crust are formulated and their consequences examined. A large set of unified EOS for purely nucleonic matter is obtained based on 24 Skyrme interactions and 9 relativistic mean-field nuclear parametrizations. In addition, for relativistic models 17 EOS including a transition to hyperonic matter at high density are presented. All these EOS have in common the property of describing a 2  M2\;M_\odot star and of being causal within stable NS. A span of 3\sim 3 km and 4\sim 4 km is obtained for the radius of, respectively, 1.0  M1.0\;M_\odot and 2.0  M2.0\;M_\odot star. Applying a set of nine further constraints from experiment and ab-initio calculations the uncertainty is reduced to 1\sim 1 km and 22 km, respectively. These residual uncertainties reflect lack of constraints at large densities and insufficient information on the density dependence of the EOS near the nuclear matter saturation point. The most important parameter to be constrained is shown to be the symmetry energy slope LL which exhibits a linear correlation with the stellar radius, particularly for masses 1.0  M\sim 1.0\;M_\odot. Potential constraints on LL, the NS radius and the EOS from observations of thermal states of NS are also discussed. [Abriged]Comment: Submitted to Phys. Rev. C. Supplemental material not include

    Invariant spin coherent states and the theory of quantum antiferromagnet in a paramagnetic phase

    Get PDF
    The consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with short range antiferromagnetic order was developed on the basis of the path integral for the spin coherent states. We have presented the Lagrangian of the theory in a form which is explicitly invariant under rotations and have found natural variables in the term of which one can construct a natural perturbation theory. The short wave spin fluctuations are similar to the spin wave theory ones, and the long wave spin fluctuations are governed by the nonlinear sigma model. We have also demonstrated that the short wave spin fluctuations have to be considered accurately in the framework of the discrete version in time of the path integral. In the framework of our approach we have obtained the response function for the spin fluctuations for the whole region of the frequency ω\omega and the wave vector k{\bf k} and have calculated the free energy of the system.Comment: 7 pages, LATEX2

    A unitary correlation operator method

    Get PDF
    The short range repulsion between nucleons is treated by a unitary correlation operator which shifts the nucleons away from each other whenever their uncorrelated positions are within the replusive core. By formulating the correlation as a transformation of the relative distance between particle pairs, general analytic expressions for the correlated wave functions and correlated operators are given. The decomposition of correlated operators into irreducible n-body operators is discussed. The one- and two-body-irreducible parts are worked out explicitly and the contribution of three-body correlations is estimated to check convergence. Ground state energies of nuclei up to mass number A=48 are calculated with a spin-isospin-dependent potential and single Slater determinants as uncorrelated states. They show that the deduced energy- and mass-number-independent correlated two-body Hamiltonian reproduces all "exact" many-body calculations surprisingly well.Comment: 43 pages, several postscript figures, uses 'epsfig.cls'. Submitted to Nucl. Phys. A. More information available at http://www.gsi.de/~fm

    A Holstein-Primakoff and a Dyson realization for the quantum algebra Uq[sl(n+1)]U_q[sl(n+1)]

    Full text link
    The known Holstein-Primakoff and Dyson realizations of the Lie algebra sl(n+1),n=1,2,...sl(n+1), n=1,2,... in terms of Bose operators (Okubo S 1975 J. Math. Phys. 16 528) are generalized to the class of the quantum algebras Uq[sl(n+1)]U_q[sl(n+1)] for any nn. It is shown how the elements of Uq[sl(n+1)]U_q[sl(n+1)] can be expressed via nn pairs of Bose creation and annihilation operators.Comment: 5 pages, Te

    A propensity matched case-control study comparing efficacy, safety and costs of the subcutaneous vs. transvenous implantable cardioverter defibrillator.

    Get PDF
    BACKGROUND: Subcutaneous implantable cardioverter defibrillators (S-ICD) have become more widely available. However, comparisons with conventional transvenous ICDs (TV-ICD) are scarce. METHODS: We conducted a propensity matched case-control study including all patients that underwent S-ICD implantation over a five-year period in a single tertiary centre. Controls consisted of all TV-ICD implant patients over a contemporary time period excluding those with pacing indication, biventricular pacemakers and those with sustained monomorphic ventricular tachycardia requiring anti-tachycardia pacing. Data was collected on device-related complications and mortality rates. A cost efficacy analysis was performed. RESULTS: Sixty-nine S-ICD cases were propensity matched to 69 TV-ICD controls. During a mean follow-up of 31±19 (S-ICD) and 32±21months (TV-ICD; p=0.88) there was a higher rate of device-related complications in the TV-ICD group predominantly accounted for by lead failures (n=20, 29% vs. n=6, 9%; p=0.004). The total mean cost for each group, including the complication-related costs was £9967±4511 (13,639±6173)and£12,601±1786(13,639±6173) and £12,601±1786 (17,243±2444) in the TV-ICD and S-ICD groups respectively (p=0.0001). Even though more expensive S-ICD was associated with a relative risk reduction of device-related complication of 70% with a HR of 0.30 (95%CI 0.12-0.76; p=0.01) compared to TV-ICDs. CONCLUSIONS: TV-ICDs are associated with increased device-related complication rates compared to a propensity matched S-ICD group during a similar follow-up period. Despite the existing significant difference in unit cost of the S-ICD, overall S-ICD costs may be mitigated versus TV-ICDs over a longer follow-up period

    The qq-boson-fermion realizations of quantum suprealgebra Uq(gl(2/1))U_q(gl(2/1))

    Full text link
    We show that our construction of realizations for Lie algebras and quantum algebras can be generalized to quantum superalgebras, too. We study an example of quantum superalgebra Uq(gl(2/1))U_q(gl(2/1)) and give the boson-fermion realization with respect to one pair od q-deformed boson operator and 2 pairs of fermions.Comment: 8 page
    corecore