708 research outputs found

    On the reduction of the degree of linear differential operators

    Full text link
    Let L be a linear differential operator with coefficients in some differential field k of characteristic zero with algebraically closed field of constants. Let k^a be the algebraic closure of k. For a solution y, Ly=0, we determine the linear differential operator of minimal degree M and coefficients in k^a, such that My=0. This result is then applied to some Picard-Fuchs equations which appear in the study of perturbations of plane polynomial vector fields of Lotka-Volterra type

    Splitting fields and general differential Galois theory

    Full text link
    An algebraic technique is presented that does not use results of model theory and makes it possible to construct a general Galois theory of arbitrary nonlinear systems of partial differential equations. The algebraic technique is based on the search for prime differential ideals of special form in tensor products of differential rings. The main results demonstrating the work of the technique obtained are the theorem on the constructedness of the differential closure and the general theorem on the Galois correspondence for normal extensions..Comment: 33 pages, this version coincides with the published on

    A rigidity property of asymptotically simple spacetimes arising from conformally flat data

    Full text link
    Given a time symmetric initial data set for the vacuum Einstein field equations which is conformally flat near infinity, it is shown that the solutions to the regular finite initial value problem at spatial infinity extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data coincides with Schwarzschild data near infinity.Comment: 37 page

    Ergodicity criteria for non-expanding transformations of 2-adic spheres

    Full text link
    In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems on 2-adic spheres S2r(a)\mathbf S_{2^{-r}}(a) of radius 2r2^{-r}, r1r\ge 1, centered at some point aa from the ultrametric space of 2-adic integers Z2\mathbb Z_2. The map f ⁣:Z2Z2f\colon\mathbb Z_2\to\mathbb Z_2 is assumed to be non-expanding and measure-preserving; that is, ff satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and ff preserves a natural probability measure on Z2\mathbb Z_2, the Haar measure μ2\mu_2 on Z2\mathbb Z_2 which is normalized so that μ2(Z2)=1\mu_2(\mathbb Z_2)=1

    Holonomy of the Ising model form factors

    Full text link
    We study the Ising model two-point diagonal correlation function C(N,N) C(N,N) by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this expansion, weighting, by powers of a variable λ\lambda, the jj-particle contributions, fN,N(j) f^{(j)}_{N,N}. The corresponding λ \lambda extension of the two-point diagonal correlation function, C(N,N;λ) C(N,N; \lambda), is shown, for arbitrary λ\lambda, to be a solution of the sigma form of the Painlev{\'e} VI equation introduced by Jimbo and Miwa. Linear differential equations for the form factors fN,N(j) f^{(j)}_{N,N} are obtained and shown to have both a ``Russian doll'' nesting, and a decomposition of the differential operators as a direct sum of operators equivalent to symmetric powers of the differential operator of the elliptic integral E E. Each fN,N(j) f^{(j)}_{N,N} is expressed polynomially in terms of the elliptic integrals E E and K K. The scaling limit of these differential operators breaks the direct sum structure but not the ``Russian doll'' structure. The previous λ \lambda-extensions, C(N,N;λ) C(N,N; \lambda) are, for singled-out values λ=cos(πm/n) \lambda= \cos(\pi m/n) (m,nm, n integers), also solutions of linear differential equations. These solutions of Painlev\'e VI are actually algebraic functions, being associated with modular curves.Comment: 39 page

    Psychological interventions in asthma

    Get PDF
    Asthma is a multifactorial chronic respiratory disease characterised by recurrent episodes of airway obstruction. The current management of asthma focuses principally on pharmacological treatments, which have a strong evidence base underlying their use. However, in clinical practice, poor symptom control remains a common problem for patients with asthma. Living with asthma has been linked with psychological co-morbidity including anxiety, depression, panic attacks and behavioural factors such as poor adherence and suboptimal self-management. Psychological disorders have a higher-than-expected prevalence in patients with difficult-to-control asthma. As psychological considerations play an important role in the management of people with asthma, it is not surprising that many psychological therapies have been applied in the management of asthma. There are case reports which support their use as an adjunct to pharmacological therapy in selected individuals, and in some clinical trials, benefit is demonstrated, but the evidence is not consistent. When findings are quantitatively synthesised in meta-analyses, no firm conclusions are able to be drawn and no guidelines recommend psychological interventions. These inconsistencies in findings may in part be due to poor study design, the combining of results of studies using different interventions and the diversity of ways patient benefit is assessed. Despite this weak evidence base, the rationale for psychological therapies is plausible, and this therapeutic modality is appealing to both patients and their clinicians as an adjunct to conventional pharmacological treatments. What are urgently required are rigorous evaluations of psychological therapies in asthma, on a par to the quality of pharmaceutical trials. From this evidence base, we can then determine which interventions are beneficial for our patients with asthma management and more specifically which psychological therapy is best suited for each patient

    Nonintegrability of the two-body problem in constant curvature spaces

    Full text link
    We consider the reduced two-body problem with the Newton and the oscillator potentials on the sphere S2{\bf S}^{2} and the hyperbolic plane H2{\bf H}^{2}. For both types of interaction we prove the nonexistence of an additional meromorphic integral for the complexified dynamic systems.Comment: 20 pages, typos correcte

    Analytic curves in algebraic varieties over number fields

    Full text link
    We establish algebraicity criteria for formal germs of curves in algebraic varieties over number fields and apply them to derive a rationality criterion for formal germs of functions, which extends the classical rationality theorems of Borel-Dwork and P\'olya-Bertrandias valid over the projective line to arbitrary algebraic curves over a number field. The formulation and the proof of these criteria involve some basic notions in Arakelov geometry, combined with complex and rigid analytic geometry (notably, potential theory over complex and pp-adic curves). We also discuss geometric analogues, pertaining to the algebraic geometry of projective surfaces, of these arithmetic criteria.Comment: 55 pages. To appear in "Algebra, Arithmetic, and Geometry: In Honor of Y.i. Manin", Y. Tschinkel & Yu. Manin editors, Birkh\"auser, 200

    Fuchs versus Painlev\'e

    Full text link
    We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e VI. We then show that the polynomiality of the expressions of the correlation functions (and form factors) in terms of the complete elliptic integral of the first and second kind, K K and E E, is a straight consequence of the fact that the differential operators corresponding to the entries of Toeplitz-like determinants, are equivalent to the second order operator LE L_E which has E E as solution (or, for off-diagonal correlations to the direct sum of LE L_E and d/dt d/dt). We show that this can be generalized, mutatis mutandis, to the anisotropic Ising model. The singled-out second order linear differential operator LE L_E being replaced by an isomonodromic system of two third-order linear partial differential operators associated with Π1 \Pi_1, the Jacobi's form of the complete elliptic integral of the third kind (or equivalently two second order linear partial differential operators associated with Appell functions, where one of these operators can be seen as a deformation of LE L_E). We finally explore the generalizations, to the anisotropic Ising models, of the links we made, in two previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and elliptic curves. In particular the elliptic representation of Painlev\'e VI has to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of Difference Equations, SIDE VII meeting held in Melbourne during July 200

    Psycho-educational interventions for adults with severe or difficult asthma: a systematic review.

    Get PDF
    types: Journal Article; Research Support, Non-U.S. Gov't; ReviewThis is the author's version of the work that was accepted for publication in the Journal of Asthma. The final version can be accessed via the DOI in this record.Research highlights psychosocial factors associated with adverse asthma events. This systematic review therefore examined whether psycho-educational interventions improve health and self-management outcomes in adults with severe or difficult asthma. Seventeen controlled studies were included. Characteristics and content of interventions varied even within broad types. Study quality was generally poor and several studies were small. Any positive effects observed from qualitative and quantitative syntheses were mainly short term and, in planned subgroup analyses (involving < 5 trials), effects on hospitalizations, quality of life, and psychological morbidity in patients with severe asthma did not extend to those in whom multiple factors complicate management.UK NHS Health Technology Assessment Programm
    corecore