708 research outputs found
On the reduction of the degree of linear differential operators
Let L be a linear differential operator with coefficients in some
differential field k of characteristic zero with algebraically closed field of
constants. Let k^a be the algebraic closure of k. For a solution y, Ly=0, we
determine the linear differential operator of minimal degree M and coefficients
in k^a, such that My=0. This result is then applied to some Picard-Fuchs
equations which appear in the study of perturbations of plane polynomial vector
fields of Lotka-Volterra type
Splitting fields and general differential Galois theory
An algebraic technique is presented that does not use results of model theory
and makes it possible to construct a general Galois theory of arbitrary
nonlinear systems of partial differential equations. The algebraic technique is
based on the search for prime differential ideals of special form in tensor
products of differential rings. The main results demonstrating the work of the
technique obtained are the theorem on the constructedness of the differential
closure and the general theorem on the Galois correspondence for normal
extensions..Comment: 33 pages, this version coincides with the published on
A rigidity property of asymptotically simple spacetimes arising from conformally flat data
Given a time symmetric initial data set for the vacuum Einstein field
equations which is conformally flat near infinity, it is shown that the
solutions to the regular finite initial value problem at spatial infinity
extend smoothly through the critical sets where null infinity touches spatial
infinity if and only if the initial data coincides with Schwarzschild data near
infinity.Comment: 37 page
Ergodicity criteria for non-expanding transformations of 2-adic spheres
In the paper, we obtain necessary and sufficient conditions for ergodicity
(with respect to the normalized Haar measure) of discrete dynamical systems
on 2-adic spheres of radius
, , centered at some point from the ultrametric space of
2-adic integers . The map is
assumed to be non-expanding and measure-preserving; that is, satisfies a
Lipschitz condition with a constant 1 with respect to the 2-adic metric, and
preserves a natural probability measure on , the Haar measure
on which is normalized so that
Holonomy of the Ising model form factors
We study the Ising model two-point diagonal correlation function by
presenting an exponential and form factor expansion in an integral
representation which differs from the known expansion of Wu, McCoy, Tracy and
Barouch. We extend this expansion, weighting, by powers of a variable
, the -particle contributions, . The corresponding
extension of the two-point diagonal correlation function, , is shown, for arbitrary , to be a solution of the sigma
form of the Painlev{\'e} VI equation introduced by Jimbo and Miwa. Linear
differential equations for the form factors are obtained and
shown to have both a ``Russian doll'' nesting, and a decomposition of the
differential operators as a direct sum of operators equivalent to symmetric
powers of the differential operator of the elliptic integral . Each is expressed polynomially in terms of the elliptic integrals and . The scaling limit of these differential operators breaks the
direct sum structure but not the ``Russian doll'' structure. The previous -extensions, are, for singled-out values ( integers), also solutions of linear differential
equations. These solutions of Painlev\'e VI are actually algebraic functions,
being associated with modular curves.Comment: 39 page
Psychological interventions in asthma
Asthma is a multifactorial chronic respiratory disease characterised by recurrent episodes of airway obstruction. The current management of asthma focuses principally on pharmacological treatments, which have a strong evidence base underlying their use. However, in clinical practice, poor symptom control remains a common problem for patients with asthma. Living with asthma has been linked with psychological co-morbidity including anxiety, depression, panic attacks and behavioural factors such as poor adherence and suboptimal self-management. Psychological disorders have a higher-than-expected prevalence in patients with difficult-to-control asthma. As psychological considerations play an important role in the management of people with asthma, it is not surprising that many psychological therapies have been applied in the management of asthma. There are case reports which support their use as an adjunct to pharmacological therapy in selected individuals, and in some clinical trials, benefit is demonstrated, but the evidence is not consistent. When findings are quantitatively synthesised in meta-analyses, no firm conclusions are able to be drawn and no guidelines recommend psychological interventions. These inconsistencies in findings may in part be due to poor study design, the combining of results of studies using different interventions and the diversity of ways patient benefit is assessed. Despite this weak evidence base, the rationale for psychological therapies is plausible, and this therapeutic modality is appealing to both patients and their clinicians as an adjunct to conventional pharmacological treatments. What are urgently required are rigorous evaluations of psychological therapies in asthma, on a par to the quality of pharmaceutical trials. From this evidence base, we can then determine which interventions are beneficial for our patients with asthma management and more specifically which psychological therapy is best suited for each patient
Nonintegrability of the two-body problem in constant curvature spaces
We consider the reduced two-body problem with the Newton and the oscillator
potentials on the sphere and the hyperbolic plane .
For both types of interaction we prove the nonexistence of an additional
meromorphic integral for the complexified dynamic systems.Comment: 20 pages, typos correcte
Analytic curves in algebraic varieties over number fields
We establish algebraicity criteria for formal germs of curves in algebraic
varieties over number fields and apply them to derive a rationality criterion
for formal germs of functions, which extends the classical rationality theorems
of Borel-Dwork and P\'olya-Bertrandias valid over the projective line to
arbitrary algebraic curves over a number field.
The formulation and the proof of these criteria involve some basic notions in
Arakelov geometry, combined with complex and rigid analytic geometry (notably,
potential theory over complex and -adic curves). We also discuss geometric
analogues, pertaining to the algebraic geometry of projective surfaces, of
these arithmetic criteria.Comment: 55 pages. To appear in "Algebra, Arithmetic, and Geometry: In Honor
of Y.i. Manin", Y. Tschinkel & Yu. Manin editors, Birkh\"auser, 200
Fuchs versus Painlev\'e
We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e
VI. We then show that the polynomiality of the expressions of the correlation
functions (and form factors) in terms of the complete elliptic integral of the
first and second kind,
and , is a straight consequence of the fact that the differential
operators corresponding to the entries of Toeplitz-like determinants, are
equivalent to the second order operator which has as solution (or,
for off-diagonal correlations to the direct sum of and ). We show
that this can be generalized, mutatis mutandis, to the anisotropic Ising model.
The singled-out second order linear differential operator being replaced
by an isomonodromic system of two third-order linear partial differential
operators associated with , the Jacobi's form of the complete elliptic
integral of the third kind (or equivalently two second order linear partial
differential operators associated with Appell functions, where one of these
operators can be seen as a deformation of ). We finally explore the
generalizations, to the anisotropic Ising models, of the links we made, in two
previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and
elliptic curves. In particular the elliptic representation of Painlev\'e VI has
to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of
Difference Equations, SIDE VII meeting held in Melbourne during July 200
Psycho-educational interventions for adults with severe or difficult asthma: a systematic review.
types: Journal Article; Research Support, Non-U.S. Gov't; ReviewThis is the author's version of the work that was accepted for publication in the Journal of Asthma. The final version can be accessed via the DOI in this record.Research highlights psychosocial factors associated with adverse asthma events. This systematic review therefore examined whether psycho-educational interventions improve health and self-management outcomes in adults with severe or difficult asthma. Seventeen controlled studies were included. Characteristics and content of interventions varied even within broad types. Study quality was generally poor and several studies were small. Any positive effects observed from qualitative and quantitative syntheses were mainly short term and, in planned subgroup analyses (involving < 5 trials), effects on hospitalizations, quality of life, and psychological morbidity in patients with severe asthma did not extend to those in whom multiple factors complicate management.UK NHS Health Technology Assessment Programm
- …
