59 research outputs found
Numerical modeling of the tension stiffening in reinforced concrete members via discontinuum models
[prova tipográfica]This study presents a numerical investigation on the fracture mechanism of tension stiffening phenomenon in reinforced concrete members. A novel approach using the discrete element method (DEM) is proposed, where three-dimensional randomly generated distinct polyhedral blocks are used, representing concrete and one-dimensional truss elements are utilized, representing steel reinforcements. Thus, an explicit representation of reinforced concrete members is achieved, and the mechanical behavior of the system is solved by integrating the equations of motion for each block using the central difference algorithm. The inter-block interactions are taken into consideration at each contact point with springs and cohesive frictional elements. Once the applied modeling strategy is validated, based on previously published experimental findings, a sensitivity analysis is performed for bond stiffness, cohesion strength, and the number of truss elements. Hence, valuable inferences are made regarding discontinuum analysis of reinforced concrete members, including concrete-steel interaction and their macro behavior. The results demonstrate that the proposed phenomenological modeling strategy successfully captures the concrete-steel interaction and provides an accurate estimation of the macro behavior
3D Voronoi Tessellation for the Study of Mechanical Behavior of Rocks at Different Scales
Numerical investigation of crack damage development and microfracturing in brittle rocks is a widely studied topic, given the number of applications involved. In the framework of the Discrete Element Method (DEM) formulation, the grain-based distinct element model with random polygonal blocks can represent an alternative to the Bonded-Particle Model (BPM) based on particles. Recently, a new engine called Neper has been made available for generating 3D Voronoi grains. The aim of this study is to investigate the applicability of a Neper-based 3D Voronoi tessellation technique for the simulation of the mechanical macro response of rocks. Simulation of unconfined compression tests on synthetic specimens is conducted and a calibration procedure tested. The issue related to scale effects is also addressed, with an application to the case study of a deep geothermal reservoir
Microtexture tracking of sub-boundary evolution during hot deformation of aluminium
International audienceThe microstructure and microtexture evolution of the same 3 grains around a triple point has been followed during hot plane strain compression by electron backscattered diffraction (EBSD) up to a strain of 1.2. A large grained model alloy of Al-0.1 wt% Mn was deformed in the form of a split sample in channel die compression at 400 degrees C by 3 repeated cycles, each involving EBSD grain orientation mapping, hot deformation and quenching. Detailed substructure maps of 3 grains on an inner surface demonstrates that their dislocation substructure develops up to a strain of about 0.5 then stabilises at approximately constant size, disorientation distribution and boundary alignment. The results are consistent with the repolygonisation model of steady state sub-boundary creation and dissolution during hot deformation
3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing
AbstractA grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (random poly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D) codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks
Microtexture tracking in hot-deformed polycrystalline aluminium: Comparison with simulations
A full-field crystal-plasticity analysis of bimodal polycrystals
International audienceA full field crystal plasticity modelling of bimodal polycrystals is presented. Bimodal polycrystals are generated using a controlled Laguerre–Voronoi algorithm, and a modified phenomenological law is used to take into account the grain size effect through a Hall–Petch term. A focus is particularly made on the effects of grain size and of grain size ratio between ultrafine grains and coarse grains populations on local and global mechanical responses. The effect of the spatial distribution of the coarse grains (clustered or isolated) is also analysed in terms of strain localisation and stress concentration at the local scale
Preferred lattice misorientations in rolled aluminium: tracking experiments and crystal plasticity simulations
A full-field crystal-plasticity analysis of bimodal polycrystals
International audienceA full field crystal plasticity modelling of bimodal polycrystals is presented. Bimodal polycrystals are generated using a controlled Laguerre–Voronoi algorithm, and a modified phenomenological law is used to take into account the grain size effect through a Hall–Petch term. A focus is particularly made on the effects of grain size and of grain size ratio between ultrafine grains and coarse grains populations on local and global mechanical responses. The effect of the spatial distribution of the coarse grains (clustered or isolated) is also analysed in terms of strain localisation and stress concentration at the local scale
- …
