1,574 research outputs found
Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2
We investigate polarization memory effects in single-crystal CuFeO2, which
has a magnetically-induced ferroelectric phase at low temperatures and applied
B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric
phase, we find that the nonpolar collinear antiferromagnetic ground state at B
= 0 T retains a strong memory of the polarization magnitude and direction, such
that upon re-entering the ferroelectric phase a net polarization of comparable
magnitude to the initial polarization is recovered in the absence of external
bias. This memory effect is very robust: in pulsed-magnetic-field measurements,
several pulses into the ferroelectric phase with reverse bias are required to
switch the polarization direction, with significant switching only seen after
the system is driven out of the ferroelectric phase and ground state either
magnetically (by application of B > 13 T) or thermally. The memory effect is
also largely insensitive to the magnetoelastic domain composition, since no
change in the memory effect is observed for a sample driven into a
single-domain state by application of stress in the [1-10] direction. On the
basis of Monte Carlo simulations of the ground state spin configurations, we
propose that the memory effect is due to the existence of helical domain walls
within the nonpolar collinear antiferromagnetic ground state, which would
retain the helicity of the polar phase for certain magnetothermal histories.Comment: 9 pages, 7 figure
Effect of Sr substitution on superconductivity in Hg2(Ba1-ySry)2YCu2O8-d (part2): bond valence sum approach of the hole distribution
The effects of Sr substitution on superconductivity, and more particulary the
changes induced in the hole doping mechanism, were investigated in
Hg2(Ba1-ySry)2YCu2O8-d by a "bond valence sum" analysis with Sr content from y
= 0.0 to y = 1.0. A comparison with CuBa2YCu2O7-d and Cu2Ba2YCu2O8 systems
suggests a possible explanation of the Tc enhancement from 0 K for y = 0.0 to
42 K for y = 1.0. The charge distribution among atoms of the unit cell was
determined from the refined structure, for y = 0.0 to 1.0. It shows a charge
transfer to the superconducting CuO2 plane via two doping channels pi(1) and
pi(2), i.e. through O2(apical)-Cu and Ba/Sr-O1 bonds respectively.Comment: 13 pages, 5 figures, accepted for publication in Journal of Physics:
Condensed Matte
What's nonviolence to do with the European Union?
This is the author accepted manuscript. The final version is available from UACES via the link in this record.Nonviolence has an established tradition in several disciplines,
including political theory, international relations and political
science. We explore the potential of nonviolence as analytical
and normative framework for the study of European integration
and European Union (EU) politics. At the outset, we introduce
the basics of nonviolence and define our approach to this
concept. We then apply it to three critical issues concerning the
nature of EU power, the democratic deficit and the narrative of
integration. We find that our framework re-defines the core
dimensions of the problems of power and democracy, assists in
imagining the EU in non state-morphic ways, and provides
innovative ways to put praxis at the roots of the integration
process and its narrative
Low-Temperature Permittivity of Insulating Perovskite Manganites
Measurements of the low-frequency (f<=100 kHz) permittivity and conductivity
at T<= 150 K are reported for La(1-x)Ca(x)MnO(3) (0<=x<=1) and
Ca(1-y)Sr(y)MnO(3) (0<=y<=0.75) having antiferromagnetic, insulating ground
states covering a broad range of Mn valencies from Mn(3+) to Mn(4+). Static
dielectric constants are determined from the low-T limiting behavior. With
increasing T, relaxation peaks associated with charge-carrier hopping are
observed in the real part of the permittivities and analyzed to determine
dopant binding energies. The data are consistent with a simple model of
hydrogenic impurity levels and imply effective masses m*/m_e~3 for the Mn(4+)
compounds. Particularly interesting is a large dielectric constant (~100)
associated with the C-type antiferromagnetic state near the composition
La(0.2)Ca(0.8)MnO(3).Comment: 6 pages, 8 figures, PRB in pres
High Performances Corrugated Feed Horns for Space Applications at Millimetre Wavelengths
We report on the design, fabrication and testing of a set of high performance
corrugated feed horns at 30 GHz, 70 GHz and 100 GHz, built as advanced
prototypes for the Low Frequency Instrument (LFI) of the ESA Planck mission.
The electromagnetic designs include linear (100 GHz) and dual shaped (30 and 70
GHz) profiles. Fabrication has been achieved by direct machining at 30 GHz, and
by electro-formation at higher frequencies. The measured performances on side
lobes and return loss meet the stringent Planck requirements over the large
(20%) instrument bandwidth. Moreover, the advantage in terms of main lobe shape
and side lobes levels of the dual profiled designs has been demonstrated.Comment: 16 pages, 7 figures, accepted for publication in Experimental
Astronom
Essential Role of the Cooperative Lattice Distortion in the Charge, Orbital and Spin Ordering in doped Manganites
The role of lattice distortion in the charge, orbital and spin ordering in
half doped manganites has been investigated. For fixed magnetic ordering, we
show that the cooperative lattice distortion stabilize the experimentally
observed ordering even when the strong on-site electronic correlation is taken
into account. Furthermore, without invoking the magnetic interactions, the
cooperative lattice distortion alone may lead to the correct charge and orbital
ordering including the charge stacking effect, and the magnetic ordering can be
the consequence of such a charge and orbital ordering. We propose that the
cooperative nature of the lattice distortion is essential to understand the
complicated charge, orbital and spin ordering observed in doped manganites.Comment: 5 pages,4 figure
Temperature and field dependence of the phase separation, structure, and magnetic ordering in LaCaMnO, (, 0.50, and 0.53)
Neutron powder diffraction measurements, combined with magnetization and
resistivity data, have been carried out in the doped perovskite
LaCaMnO (, 0.50, and 0.53) to elucidate the structural,
magnetic, and electronic properties of the system around the composition
corresponding to an equal number of Mn3+ and Mn4+. At room temperature all
three samples are paramagnetic and single phase, with crystallographic symmetry
Pnma. The samples then all become ferromagnetic (FM) at K. At
K, however, a second distinct crystallographic phase (denoted A-II)
begins to form. Initially the intrinsic widths of the peaks are quite large,
but they narrow as the temperature decreases and the phase fraction increases,
indicating microscopic coexistence. The fraction of the sample that exhibits
the A-II phase increases with decreasing temperature and also increases with
increasing Ca doping, but the transition never goes to completion to the lowest
temperatures measured (5 K) and the two phases therefore coexist in this
temperature-composition regime. Phase A-II orders antiferromagnetically (AFM)
below a N\'{e}el temperature K, with the CE-type magnetic
structure. Resistivity measurements show that this phase is a conductor, while
the CE phase is insulating. Application of magnetic fields up to 9 T
progressively inhibits the formation of the A-II phase, but this suppression is
path dependent, being much stronger for example if the sample is field-cooled
compared to zero-field cooling and then applying the field. The H-T phase
diagram obtained from the diffraction measurements is in good agreement with
the results of magnetization and resistivity.Comment: 12 pages, 3 tables, 11 figure
Atomic-scale images of charge ordering in a mixed-valence manganite
Transition-metal perovskite oxides exhibit a wide range of extraordinary but
imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of
freedom all undergo order-disorder transitions in regimes not far from where
the best-known of these phenomena, namely high-temperature superconductivity of
the copper oxides, and the 'colossal' magnetoresistance of the manganese
oxides, occur. Mostly diffraction techniques, sensitive either to the spin or
the ionic core, have been used to measure the order. Unfortunately, because
they are only weakly sensitive to valence electrons and yield superposition of
signals from distinct mesoscopic phases, they cannot directly image mesoscopic
phase coexistence and charge ordering, two key features of the manganites. Here
we describe the first experiment to image charge ordering and phase separation
in real space with atomic-scale resolution in a transition metal oxide. Our
scanning tunneling microscopy (STM) data show that charge order is correlated
with structural order, as well as with whether the material is locally metallic
or insulating, thus giving an atomic-scale basis for descriptions of the
manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference
Ferromagnetic Polarons in La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3
Unrestricted Hartree-Fock calculations on La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3
in the full magnetic unit cell show that the magnetic ground states of these
compounds consist of 'ferromagnetic molecules' or polarons ordered in
herring-bone patterns. Each polaron consists of either three or five Mn ions
separated by O- ions with a magnetic moment opposed to those of the Mn ions.
Ferromagnetic coupling within the polarons is strong while coupling between
them is relatively weak. Magnetic moments on the Mn ions range between 3.8 and
3.9 Bohr magnetons in La0.5Ca0.5MnO3 and moments on the O- ions are -0.7 Bohr
magnetons. Each polaron has a net magnetic moment of 7.0 Bohr magnetons, in
good agreement with recently reported magnetisation measurements from electron
microscopy. The polaronic nature of the electronic structure reported here is
obviously related to the Zener polaron model recently proposed for
Pr0.6Ca0.4MnO3 on the basis of neutron scattering data.Comment: 4 pages 5 figure
- …
