611 research outputs found
Local Hidden Variable Theories for Quantum States
While all bipartite pure entangled states violate some Bell inequality, the
relationship between entanglement and non-locality for mixed quantum states is
not well understood. We introduce a simple and efficient algorithmic approach
for the problem of constructing local hidden variable theories for quantum
states. The method is based on constructing a so-called symmetric
quasi-extension of the quantum state that gives rise to a local hidden variable
model with a certain number of settings for the observers Alice and Bob.Comment: 8 pages Revtex; v2 contains substantial changes, a strengthened main
theorem and more reference
Spectral Conditions on the State of a Composite Quantum System Implying its Separability
For any unitarily invariant convex function F on the states of a composite
quantum system which isolates the trace there is a critical constant C such
that F(w)<= C for a state w implies that w is not entangled; and for any
possible D > C there are entangled states v with F(v)=D. Upper- and lower
bounds on C are given. The critical values of some F's for qubit/qubit and
qubit/qutrit bipartite systems are computed. Simple conditions on the spectrum
of a state guaranteeing separability are obtained. It is shown that the thermal
equilbrium states specified by any Hamiltonian of an arbitrary compositum are
separable if the temperature is high enough.Comment: Corrects 1. of Lemma 2, and the (under)statement of Proposition 7 of
the earlier version
Free energy density for mean field perturbation of states of a one-dimensional spin chain
Motivated by recent developments on large deviations in states of the spin
chain, we reconsider the work of Petz, Raggio and Verbeure in 1989 on the
variational expression of free energy density in the presence of a mean field
type perturbation. We extend their results from the product state case to the
Gibbs state case in the setting of translation-invariant interactions of finite
range. In the special case of a locally faithful quantum Markov state, we
clarify the relation between two different kinds of free energy densities (or
pressure functions).Comment: 29 pages, Section 5 added, to appear in Rev. Math. Phy
de Finetti reductions for correlations
When analysing quantum information processing protocols one has to deal with
large entangled systems, each consisting of many subsystems. To make this
analysis feasible, it is often necessary to identify some additional structure.
de Finetti theorems provide such a structure for the case where certain
symmetries hold. More precisely, they relate states that are invariant under
permutations of subsystems to states in which the subsystems are independent of
each other. This relation plays an important role in various areas, e.g., in
quantum cryptography or state tomography, where permutation invariant systems
are ubiquitous. The known de Finetti theorems usually refer to the internal
quantum state of a system and depend on its dimension. Here we prove a
different de Finetti theorem where systems are modelled in terms of their
statistics under measurements. This is necessary for a large class of
applications widely considered today, such as device independent protocols,
where the underlying systems and the dimensions are unknown and the entire
analysis is based on the observed correlations.Comment: 5+13 pages; second version closer to the published one; new titl
Monogamy of entanglement and other correlations
It has been observed by numerous authors that a quantum system being
entangled with another one limits its possible entanglement with a third
system: this has been dubbed the "monogamous nature of entanglement". In this
paper we present a simple identity which captures the trade-off between
entanglement and classical correlation, which can be used to derive rigorous
monogamy relations.
We also prove various other trade-offs of a monogamy nature for other
entanglement measures and secret and total correlation measures.Comment: 7 pages, revtex
Symmetry implies independence
Given a quantum system consisting of many parts, we show that symmetry of the
system's state, i.e., invariance under swappings of the subsystems, implies
that almost all of its parts are virtually identical and independent of each
other. This result generalises de Finetti's classical representation theorem
for infinitely exchangeable sequences of random variables as well as its
quantum-mechanical analogue. It has applications in various areas of physics as
well as information theory and cryptography. For example, in experimental
physics, one typically collects data by running a certain experiment many
times, assuming that the individual runs are mutually independent. Our result
can be used to justify this assumption.Comment: LaTeX, contains 4 figure
One-and-a-half quantum de Finetti theorems
We prove a new kind of quantum de Finetti theorem for representations of the
unitary group U(d). Consider a pure state that lies in the irreducible
representation U_{mu+nu} for Young diagrams mu and nu. U_{mu+nu} is contained
in the tensor product of U_mu and U_nu; let xi be the state obtained by tracing
out U_nu. We show that xi is close to a convex combination of states Uv, where
U is in U(d) and v is the highest weight vector in U_mu. When U_{mu+nu} is the
symmetric representation, this yields the conventional quantum de Finetti
theorem for symmetric states, and our method of proof gives near-optimal bounds
for the approximation of xi by a convex combination of product states. For the
class of symmetric Werner states, we give a second de Finetti-style theorem
(our 'half' theorem); the de Finetti-approximation in this case takes a
particularly simple form, involving only product states with a fixed spectrum.
Our proof uses purely group theoretic methods, and makes a link with the
shifted Schur functions. It also provides some useful examples, and gives some
insight into the structure of the set of convex combinations of product states.Comment: 14 pages, 3 figures, v4: minor additions (including figures),
published versio
Continuity and Stability of Partial Entropic Sums
Extensions of Fannes' inequality with partial sums of the Tsallis entropy are
obtained for both the classical and quantum cases. The definition of kth
partial sum under the prescribed order of terms is given. Basic properties of
introduced entropic measures and some applications are discussed. The derived
estimates provide a complete characterization of the continuity and stability
properties in the refined scale. The results are also reformulated in terms of
Uhlmann's partial fidelities.Comment: 9 pages, no figures. Some explanatory and technical improvements are
made. The bibliography is extended. Detected errors and typos are correcte
Complementarity in classical dynamical systems
The concept of complementarity, originally defined for non-commuting
observables of quantum systems with states of non-vanishing dispersion, is
extended to classical dynamical systems with a partitioned phase space.
Interpreting partitions in terms of ensembles of epistemic states (symbols)
with corresponding classical observables, it is shown that such observables are
complementary to each other with respect to particular partitions unless those
partitions are generating. This explains why symbolic descriptions based on an
\emph{ad hoc} partition of an underlying phase space description should
generally be expected to be incompatible. Related approaches with different
background and different objectives are discussed.Comment: 18 pages, no figure
- …
