18,904 research outputs found
Investigation of the effects of Extra Vehicular Activity (EVA) and Launch and Entry (LES) gloves on performance
Human capabilities such as dexterity, manipulability, and tactile perception are unique and render the hand as a very versatile, effective and a multipurpose tool. This is especially true for unknown environments such as the EVA environment. In the microgravity environment interfaces, procedures, and activities are too complex, diverse, and defy advance definition. Under these conditions the hand becomes the primary means of locomotion, restraint, and material handling. Facilitation of these activities, with simultaneous protection from the cruel EVA environment are the two, often conflicting, objectives of glove design. The objectives of this study was (1) to assess the effects of EVA gloves at different pressures on human hand capabilities, (2) to devise a protocol for evaluating EVA gloves, (3) to develop force time relations for a number of EVA glove pressure combinations, and (4) to evaluate two types of launch and entry suit gloves. The objectives were achieved through three experiments. The experiments for achieving objectives 1, 2, and 3 were performed in the glove box in building 34. In experiment 1 three types of EVA gloves were tested at five pressure differentials. A number of performance measures were recorded. In experiment 2 the same gloves as in experiment 1 were evaluated in a reduced number of pressure conditions. The performance measure was endurance time. Six subjects participated in both the experiments. In experiment 3 two types of launch and entry suit gloves were evaluated using a paradigm similar to experiment 1. Currently the data is being analyzed. However for this report some summary analyses have been performed. The results indicate that a) With EVA gloves strength is reduced by nearly 50 percent, b) performance decrements increase with increasing pressure differential, c) TMG effects are not consistent across the three gloves tested, d) some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand, and e) differences in performance exist between partial pressure suit glove and full pressure suit glove, especially in the unpressurized condition
Arithmetic Progressions in a Unique Factorization Domain
Pillai showed that any sequence of consecutive integers with at most 16 terms
possesses one term that is relatively prime to all the others. We give a new
proof of a slight generalization of this result to arithmetic progressions of
integers and further extend it to arithmetic progressions in unique
factorization domains of characteristic zero.Comment: Version 2 (to appear in Acta Arithmetica) with minor typos correcte
The Stellar Initial Mass Function at the Epoch of Reionization
I provide estimates of the ultraviolet and visible light luminosity density
at z~6 after accounting for the contribution from faint galaxies below the
detection limit of deep Hubble and Spitzer surveys. I find the rest-frame
V-band luminosity density is a factor of ~2-3 below the ultraviolet luminosity
density at z~6. This implies that the maximal age of the stellar population at
z~6, for a Salpeter initial mass function, and a single, passively evolving
burst, must be <100 Myr. If the stars in z~6 galaxies are remnants of the
star-formation that was responsible for ionizing the intergalactic medium,
reionization must have been a brief process that was completed at z<7. This
assumes the most current estimates of the clumping factor and escape fraction
and a Salpeter slope extending up to 200 M_{\sun} for the stellar initial mass
function (IMF; dN/dM \propto M^{\alpha}, \alpha=-2.3). Unless the ratio of the
clumping factor to escape fraction is less than 60, a Salpeter slope for the
stellar IMF and reionization redshift higher than 7 is ruled out. In order to
maintain an ionized intergalactic medium from redshift 9 onwards, the stellar
IMF must have a slope of \alpha=-1.65 even if stars as massive as ~200 M_{\sun}
are formed. Correspondingly, if the intergalactic medium was ionized from
redshift 11 onwards, the IMF must have \alpha~-1.5. The range of stellar mass
densities at z~6 straddled by IMFs which result in reionization at z>7 is
1.3+/-0.4\times10^{7} Msun/Mpc^3.Comment: 25 pages, 2 tables, 6 figures, ApJ, in press, v680 n
Exploration of The Duality Between Generalized Geometry and Extraordinary Magnetoresistance
We outline the duality between the extraordinary magnetoresistance (EMR),
observed in semiconductor-metal hybrids, and non-symmetric gravity coupled to a
diffusive gauge field. The corresponding gravity theory may be
interpreted as the generalized complex geometry of the semi-direct product of
the symmetric metric and the antisymmetric Kalb-Ramond field:
(). We construct the four dimensional covariant
field theory and compute the resulting equations of motion. The equations
encode the most general form of EMR within a well defined variational
principle, for specific lower dimensional embedded geometric scenarios. Our
formalism also reveals the emergence of additional diffusive pseudo currents
for a completely dynamic field theory of EMR. The proposed equations of motion
now include terms that induce geometrical deformations in the device geometry
in order to optimize the EMR. This bottom-up dual description between EMR and
generalized geometry/gravity lends itself to a deeper insight into the EMR
effect with the promise of potentially new physical phenomena and properties.Comment: 13 pages and 6 figures. Revised/edited for clarity and purpose.
Several references added. Updated title based on suggestions and comments
received. Version accepted for publication in Phys.Rev.
Wald's entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling
The Bekenstein-Hawking entropy of black holes in Einstein's theory of gravity
is equal to a quarter of the horizon area in units of Newton's constant. Wald
has proposed that in general theories of gravity the entropy of stationary
black holes with bifurcate Killing horizons is a Noether charge which is in
general different from the Bekenstein-Hawking entropy. We show that the Noether
charge entropy is equal to a quarter of the horizon area in units of the
effective gravitational coupling on the horizon defined by the coefficient of
the kinetic term of specific graviton polarizations on the horizon. We present
several explicit examples of static spherically symmetric black holes.Comment: 20 pages ; added clarifications, explanations, new section on the
choice of polarizations, results unchanged; replaced with published versio
UBVRI CCD photometry of the OB associations Bochum 1 and Bochum 6
We report the first deep CCD photometry of 2460 stars in the field of
two poorly studied OB associations Bochum 1 and Bochum 6. We selected 15 and 14
probable members in Bochum 1 and Bochum 6 respectively using photometric
criteria and proper motion data of Tycho 2. Our analysis indicates variable
reddening having mean value of 0.470.10 and 0.710.13 mag
for Bochum 1 and Bochum 6 respectively. Using the zero-age main-sequence
fitting method, we derive a distance of 2.80.4 and 2.50.4 Kpc for
Bochum 1 and Bochum 6 respectively. We obtain an age of 105 Myrs for both
the associations from isochrone fitting. In both associations high and low mass
stars have probably formed together. Within the observational uncertainties,
mass spectrum of the both associations appears to be similar to the Salpeter's
one.Comment: 14 pages, 7 figures, 6 tables. Accepted for Bull. Astr. Soc. Indi
- …
