2,478 research outputs found
Phase-dispersion optical tomography
We report on phase-dispersion optical tomography, a new imaging technique based on phase measurements using low-coherence interferometry. The technique simultaneously probes the target with fundamental and second-harmonic light and interferometrically measures the relative phase shift of the backscattered light fields. This phase change can arise either from reflection at an interface within a sample or from bulk refraction. We show that this highly sensitive 5 phase technique can complement optical coherence tomography, which measures electric field amplitude, by revealing otherwise undetectable dispersive variations in the sample
Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy
We present a novel interferometer for measuring angular distributions of backscattered light. The new system exploits a low-coherence source in a modified Michelson interferometer to provide depth resolution, as in optical coherence tomography, but includes an imaging system that permits the angle of the reference field to be varied in the detector plane by simple translation of an optical element. We employ this system to examine the angular distribution of light scattered by polystyrene microspheres. The measured data indicate that size information can be recovered from angular-scattering distributions and that the coherence length of the source influences the applicability of Mie theory
Cavity ring-down technique and its application to the measurement of ultraslow velocities
We have developed a new ring-down technique that does not require a shutter to turn a probe laser on and off. With a rapid cavity scan we can measure a simple exponential cavity decay from which a cavity finesse can be found. When the cavity is scanned slowly, the cavity decay exhibits an amplitude modulation, and an analytic expression is derived for this modulation. With this new technique we measured the ultraslow relative velocity of the mirrors (of the order of micrometers per second) as well as the linewidth (~100 kHz) of the probe laser
Cooperatives for demand side management
We propose a new scheme for efficient demand side management for the Smart Grid. Specifically, we envisage and promote the formation of cooperatives of medium-large consumers and equip them (via our proposed mechanisms) with the capability of regularly participating in the existing electricity markets by providing electricity demand reduction services to the Grid. Based on mechanism design principles, we develop a model for such cooperatives by designing methods for estimating suitable reduction amounts, placing bids in the market and redistributing the obtained revenue amongst the member agents. Our mechanism is such that the member agents have no incentive to show artificial reductions with the aim of increasing their revenue
Pollinator Diversity and Foraging Dynamics on Monsoon Crop of Cucurbits in a Traditional Landscape of South Indian West Coast
Studies on insect pollinator ecology and dynamics are very rarely carried out in traditional Indian agriculture landscapes. Indiscriminate landscape changes in the rural areas and tendencies towards crop monocultures can have significant effects on pollinator habitats and effectiveness. This study was aimed at observing insect pollinators, their visitation frequencies and timings on monsoon cucurbit crops such as Cucumis sativus L., C. pubescens Willd., Momordica charantia L., Trichonsanthes anguina L. and Luffa acutangula L. (Roxb.), in a coastal Karnataka Village. This study was also aimed at covering the significance of the surrounding landscape elements in sustaining pollinator elements. Bees, such as Apis dorsata, A. cerana and Trigona sp., were major visitors on all cucurbits, except snake gourd which was pollinated mainly by lepidopterans. Insect species were found to partition floral resources of any given crops between them by minimal overlapping in their visitation timings. Natural elements of the landscape around, mainly a village forest and rocky savanna furnished habitats for bees and lepidopterans. Prolifically blooming monsoon herbs on lateritic plateaus, by providing nectar resources for pollinators, presumably play key role in making the case study village well known for monsoon vegetables
Interferometric phase-dispersion microscopy
We describe a new scanning microscopy technique, phase-dispersion microscopy (PDM). The technique is based on measuring the phase difference between the fundamental and the second-harmonic light in a novel interferometer. PDM is highly sensitive to subtle refractive-index differences that are due to dispersion (differential optical path sensitivity, 5 nm). We apply PDM to measure minute amounts of DNA in solution and to study biological tissue sections. We demonstrate that PDM performs better than conventional phase-contrast microscopy in imaging dispersive and weakly scattering samples
Spatial coherence of forward-scattered light in a turbid medium
We study spatially coherent forward-scattered light propagating in a turbid medium of moderate optical depth (0-9 mean free paths). Coherent detection was achieved by using a tilted heterodyne geometry, which desensitizes coherent detection of the attenuated incident light. We show that the degree of spatial coherence is significantly higher for light scattered only once in comparison with that for multiply scattered light and that it approaches a small constant value for large numbers of scattering events
High-pressure behavior of superconducting boron-doped diamond
This work investigates the high-pressure structure of freestanding
superconducting ( = 4.3\,K) boron doped diamond (BDD) and how it affects
the electronic and vibrational properties using Raman spectroscopy and x-ray
diffraction in the 0-30\,GPa range. High-pressure Raman scattering experiments
revealed an abrupt change in the linear pressure coefficients and the grain
boundary components undergo an irreversible phase change at 14\,GPa. We show
that the blue shift in the pressure-dependent vibrational modes correlates with
the negative pressure coefficient of in BDD. The analysis of x-ray
diffraction data determines the equation of state of the BDD film, revealing a
high bulk modulus of =51028\,GPa. The comparative analysis of
high-pressure data clarified that the sp carbons in the grain boundaries
transform into hexagonal diamond.Comment: 7 pages, 4 figure
Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics
We report a highly sensitive means of measuring cellular dynamics with a novel interferometer that can measure motional phase changes. The system is based on a modified Michelson interferometer with a composite laser beam of 1550-nm low-coherence light and 775-nm CW light. The sample is prepared on a coverslip that is highly reflective at 775nm. By referencing the heterodyne phase of the 1550-nm light reflected from the sample to that of the 775-nm light reflected from the coverslip, small motions in the sample are detected, and motional artifacts from vibrations in the interferometer are completely eliminated. We demonstrate that the system is sensitive to motions as small as 3.6nm and velocities as small as 1nm/s. Using the instrument, we study transient volume changes of a few (approximately three) cells in a monolayer immersed in weakly hypotonic and hypertonic solutions
- …
