729 research outputs found
L'CO/LFIR Relations with CO Rotational Ladders of Galaxies Across the Herschel SPIRE Archive
We present a catalog of all CO (J=4-3 through J=13-12)), [CI], [NII] lines
available from extragalactic spectra from the Herschel SPIRE Fourier Transform
Spectrometer (FTS) archive combined with observations of the low-J CO lines
from the literature and from the Arizona Radio Observatory. This work examines
the relationships between LFIR, L'CO, and LCO/LCO(1-0). We also present a new
method for estimating probability distribution functions (PDFs) from marginal
signal-to-noise ratio Herschel} FTS spectra, which takes into account the
instrumental "ringing" and the resulting highly correlated nature of the
spectra. The slopes of log(LFIR) vs. log(L'CO) are linear for all mid- to
high-J CO lines and slightly sublinear if restricted to (U)LIRGs. The mid- to
high-J CO luminosity relative to CO J=1-0 increases with increasing LFIR,
indicating higher excitement of the molecular gas, though these ratios do not
exceed ~ 180. For a given bin in LFIR, the luminosities relative to CO J=1-0
remain relatively flat from J=6-5 through J=13-12, across three orders of
magnitude of LFIR. A single component theoretical photon-dominated region (PDR)
model cannot match these flat SLED shapes, though combinations of PDR models
with mechanical heating added qualitatively match the shapes, indicating the
need for further comprehensive modeling of the excitation processes of warm
molecular gas in nearby galaxies.Comment: 17 pages, 4 figures (including appendix), accepted by ApJ. Full
tables will be in VizieR upon publication, email first author for tables in
the meantim
A Three Dimensional Lattice of Ion Traps
We propose an ion trap configuration such that individual traps can be
stacked together in a three dimensional simple cubic arrangement. The isolated
trap as well as the extended array of ion traps are characterized for different
locations in the lattice, illustrating the robustness of the lattice of traps
concept. Ease in the addressing of ions at each lattice site, individually or
simultaneously, makes this system naturally suitable for a number of
experiments. Application of this trap to precision spectroscopy, quantum
information processing and the study of few particle interacting system are
discussed.Comment: 4 pages, 4 Figures. Fig 1 appears as a composite of 1a, 1b, 1c and
1d. Fig 2 appears as a composite of 2a, 2b and 2
Submillimetre line spectrum of the Seyfert galaxy NGC1068 from the Herschel-SPIRE Fourier Transform Spectrometer
The first complete submillimetre spectrum (190-670um) of the Seyfert 2 galaxy
NGC1068 has been observed with the SPIRE Fourier Transform Spectrometer onboard
the {\it Herschel} Space Observatory. The sequence of CO lines (Jup=4-13),
lines from water, the fundamental rotational transition of HF, two o-H_2O+
lines and one line each from CH+ and OH+ have been detected, together with the
two [CI] lines and the [NII]205um line. The observations in both single
pointing mode with sparse image sampling and in mapping mode with full image
sampling allow us to disentangle two molecular emission components, one due to
the compact circum-nuclear disk (CND) and one from the extended region
encompassing the star forming ring (SF-ring). Radiative transfer models show
that the two CO components are characterized by density of n(H_2)=10^4.5 and
10^2.9 cm^-3 and temperature of T=100K and 127K, respectively. The comparison
of the CO line intensities with photodissociation region (PDR) and X-ray
dominated region (XDR) models, together with other observational constraints,
such as the observed CO surface brightness and the radiation field, indicate
that the best explanation for the CO excitation of the CND is an XDR with
density of n(H_2) 10^4 cm^-3 and X-ray flux of 9 erg s^-1 cm^-2, consistent
with illumination by the active galactic nucleus, while the CO lines in the
SF-ring are better modeled by a PDR. The detected water transitions, together
with those observed with the \her \sim PACS Spectrometer, can be modeled by an
LVG model with low temperature (T_kin \sim 40K) and high density (n(H_2) in the
range 10^6.7-10^7.9 cm^-3).Comment: Accepted for publication on the Astrophysical Journal, 30 August 201
The origin of the split red clump in the Galactic bulge of the Milky Way
Near the minor axis of the Galactic bulge, at latitudes b < -5 degrees, the
red giant clump stars are split into two components along the line of sight. We
investigate this split using the three fields from the ARGOS survey that lie on
the minor axis at (l,b) = (0,-5), (0,-7.5), (0,-10) degrees. The separation is
evident for stars with [Fe/H] > -0.5 in the two higher-latitude fields, but not
in the field at b = -5 degrees. Stars with [Fe/H] < -0.5 do not show the split.
We compare the spatial distribution and kinematics of the clump stars with
predictions from an evolutionary N-body model of a bulge that grew from a disk
via bar-related instabilities. The density distribution of the peanut-shaped
model is depressed near its minor axis. This produces a bimodal distribution of
stars along the line of sight through the bulge near its minor axis, very much
as seen in our observations. The observed and modelled kinematics of the two
groups of stars are also similar. We conclude that the split red clump of the
bulge is probably a generic feature of boxy/peanut bulges that grew from disks,
and that the disk from which the bulge grew had relatively few stars with
[Fe/H] < -0.5Comment: 12 pages, 9 figures, accepted for publication in Ap
Herschel SPIRE-FTS Observations of Excited CO and [CI] in the Antennae (NGC 4038/39): Warm and Cold Molecular Gas
We present Herschel SPIRE-FTS observations of the Antennae (NGC 4038/39), a
well studied, nearby ( Mpc) ongoing merger between two gas rich spiral
galaxies. We detect 5 CO transitions ( to ), both [CI]
transitions and the [NII] transition across the entire system, which
we supplement with ground based observations of the CO , and
transitions, and Herschel PACS observations of [CII] and [OI].
Using the CO and [CI] transitions, we perform both a LTE analysis of [CI], and
a non-LTE radiative transfer analysis of CO and [CI] using the radiative
transfer code RADEX along with a Bayesian likelihood analysis. We find that
there are two components to the molecular gas: a cold ( K)
and a warm ( K) component. By comparing the warm gas mass
to previously observed values, we determine a CO abundance in the warm gas of
. If the CO abundance is the same in the warm and
cold gas phases, this abundance corresponds to a CO luminosity-to-mass
conversion factor of $\alpha_{CO} \sim 7 \ M_{\odot}{pc^{-2} \ (K \ km \
s^{-1})^{-1}}_263\mu m\sim 0.01 L_{\odot}/M_{\odot}G_0\sim 1000$. Finally, we find
that a combination of turbulent heating, due to the ongoing merger, and
supernova and stellar winds are sufficient to heat the molecular gas.Comment: 50 pages, 15 figures, 8 tables, Accepted for publication in The
Astrophysical Journa
Combined ion and atom trap for low temperature ion-atom physics
We report an experimental apparatus and technique which simultaneously traps
ions and cold atoms with spatial overlap. Such an apparatus is motivated by the
study of ion-atom processes at temperatures ranging from hot to ultra-cold.
This area is a largely unexplored domain of physics with cold trapped atoms. In
this article we discuss the general design considerations for combining these
two traps and present our experimental setup. The ion trap and atom traps are
characterized independently of each other. The simultaneous operation of both
is then described and experimental signatures of the effect of the ions and
cold-atoms on each other are presented. In conclusion the use of such an
instrument for several problems in physics and chemistry is briefly discussed.Comment: 24 pages, 13 figures. Figures Fixe
- …
