2,889 research outputs found
Failure analysis of a tool steel torque shaft
A low design load drive shaft used to deliver power from an experimental exhaust heat recovery system to the crankshaft of an experimental diesel truck engine failed during highway testing. An independent testing laboratory analyzed the failure by routine metallography and attributed the failure to fatigue induced by a banded microstructure. Visual examination by NASA of the failed shaft plus the knowledge of the torsional load that it carried pointed to a 100 percent ductile failure with no evidence of fatigue. Scanning electron microscopy confirmed this. Torsional test specimens were produced from pieces of the failed shaft and torsional overload testing produced identical failures to that which had occurred in the truck engine. This pointed to a failure caused by a high overload and although the microstructure was defective it was not the cause of the failure
Decoupling Extreme Programming From Byzantine Fault Tolerance in Multicast Algorithms
Unified embedded archetypes have led to many practical advances, including fiber-optic cables and Internet QoS. In fact, few biologists would disagree with the simulation of agents, demonstrates the significant importance of machine learning. Kapia, our new heuristic for the con- struction of extreme programming, is the solution to all of these problems
Strategi Positioning Slank Dalam Menanamkan Citra Sebagai Salah Satu Grup Band Di Indonesia
 Abstract: This research is aimed to analyze the positioning strategy of music group band, the Slank, that still now can exist in Indonesia.The Slank is offering some differentiation that can be identified, offering an unique selling proposition (USP) that can be differentiate among their competitors. Some several findings in the research are: the Slank delivers a tagline “polos dan apa adanya†(means innocent and just be yourself) which contains solid and clear messages to their audience. This message divulged in their overall activities including in how they communicate and promote to their audience. The message “polos dan apa adanya†have been emerging in various of a medium that Slank used to communicate, including music and the lyrics of the songs, video clips, their performances or life style in their daily activities, their cover and logo, Slank’s live show and Slank’s merchandises. From their lyrics of the Slank song titled Seperti Para Koruptor, the Slank gives a clear message to persuade the audiences to live with humble and just be ourselves because in the living world, happiness and peaceful is much more worthed instead of being rich and famous. With all that efforts, the Slank tries to place their image among their audience and trying to be unique and different. Positioning strategy that pertain to the Slank should be managed and controlled in order to surviving Slank among of the competitors
Government review of the Mod-2 wind turbine (as-built)
The findings and recommendations of the Government committee formed to conduct an as-built review of the three Mod-2 wind turbine units at Goldendale, Washington are given. The purpose of the review was to identify any critical deficiencies in machine components that could result in failure, and to recommend any necessary corrective action before resuming safe machine operation. The review concluded that one of the deficiencies identified would preclude planned attended or unattended operation, provided that certain corrective actions were implemented
Materials Science Research Rack Onboard the International Space Station
The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to support US PIs and their partners. The first of these Flight SCAs are being developed for investigations to support research in the areas of crystal growth and liquid phase sintering. Subsequent investigations are in various stages of development. US investigations will include a ground test program in order to distinguish the particular effects of the absence of gravity
Materials Science Research Rack Onboard the International Space Station
The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved material
All Hands on Deck: Collaborative Global Strategies in the Battle Against Corruption and Human Trafficking in Africa
Origin of depleted basalts during subduction initiation and early development of the Izu-Bonin-Mariana island arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin
The Izu-Bonin-Mariana (IBM) island arc formed following initiation of subduction of the Pacific plate beneath the Philippine Sea plate at about 52 Ma. Site U1438 of IODP Expedition 351 was drilled to sample the oceanic basement on which the IBM arc was constructed, to better understand magmatism prior to and during the subduction initiation event. Site U1438 igneous basement Unit 1 (150 m) was drilled beneath 1460 m of primarily volcaniclastic sediments and sedimentary rock. Basement basalts are microcrystalline to fine-grained flows and form several distinct subunits (1a-1f), all relatively mafic (MgO = 6.5–13.8%; Mg# = 52–83), with Cr = 71–506 ppm and Ni = 62–342 ppm. All subunits are depleted in non-fluid mobile incompatible trace elements. Ratios such as Sm/Nd (0.35–0.44), Lu/Hf (0.19–0.37), and Zr/Nb (55–106) reach the highest values found in MORB, while La/Yb (0.31–0.92), La/Sm (0.43–0.91) and Nb/La (0.39–0.59) reach the lowest values. Abundances of fluid-mobile incompatible elements, K, Rb, Cs and U, vary with rock physical properties, indicating control by post-eruptive seawater alteration, but lowest abundances are typical of fresh, highly depleted MORBs. Mantle sources for the different subunits define a trend of progressive incompatible element depletion. Inferred pressures of magma segregation are 0.6–2.1 GPa with temperatures of 1280–1470 °C.
New 40Ar/39Ar dates for Site U1438 basalts averaging 48.7 Ma (Ishizuka et al., 2018) are younger that the inferred age of IBM subduction initiation based on the oldest ages (52 Ma) of IBM forearc basalts (FAB) from the eastern margin of the Philippine Sea plate. FAB are hypothesized to be the first magma type erupted as the Pacific plate subsided, followed by boninites, and ultimately typical arc magmas over a period of about 10 Ma. Site U1438 basalts and IBM FABs are similar, but Site U1438 basalts have lower V contents, higher Ti/V and little geochemical evidence for involvement of slab-derived fluids. We hypothesize that the asthenospheric upwelling and extension expected during subduction initiation occurred over a broad expanse of the upper plate, even as hydrous fluids were introduced near the plate edge to produce FABs and boninites. Site U1438 basalts formed by decompression melting during the first 3 Ma of subduction initiation, and were stranded behind the early IBM arc as mantle conditions shifted to flux melting beneath a well-defined volcanic front
Quality Audit in the Fastener Industry
Both the financial and quality communities rely on audits to verify customers records. The financial community is highly structured around three categories of risk, INHERENT RISK, CONTROL RISK, and DETECTION RISK. Combined, the product of these three categories constitute the AUDIT RISK. The financial community establishes CONTROL RISK based in large part on a systems level understanding of the process flow. This system level understanding is best expressed in a flowchart. The quality community may be able to adopt this structure and thereby reduce cost while maintaining and enhancing quality. The quality community should attempt to flowchart the systems level quality process before beginning substantive testing. This theory needs to be applied in several trial cases to prove or disprove this hypothesi
- …
