33 research outputs found

    SWIFT clustering analysis of intracellular cytokine staining flow cytometry data of the HVTN 105 vaccine trial reveals high frequencies of HIV-specific CD4+ T cell responses and associations with humoral responses

    Get PDF
    IntroductionThe HVTN 105 vaccine clinical trial tested four combinations of two immunogens - the DNA vaccine DNA-HIV-PT123, and the protein vaccine AIDSVAX B/E. All combinations induced substantial antibody and CD4+ T cell responses in many participants. We have now re-examined the intracellular cytokine staining flow cytometry data using the high-resolution SWIFT clustering algorithm, which is very effective for enumerating rare populations such as antigen-responsive T cells, and also determined correlations between the antibody and T cell responses.MethodsFlow cytometry samples across all the analysis batches were registered using the swiftReg registration tool, which reduces batch variation without compromising biological variation. Registered data were clustered using the SWIFT algorithm, and cluster template competition was used to identify clusters of antigen-responsive T cells and to separate these from constitutive cytokine producing cell clusters.ResultsRegistration strongly reduced batch variation among batches analyzed across several months. This in-depth clustering analysis identified a greater proportion of responders than the original analysis. A subset of antigen-responsive clusters producing IL-21 was identified. The cytokine patterns in each vaccine group were related to the type of vaccine – protein antigens tended to induce more cells producing IL-2 but not IFN-γ, whereas DNA vaccines tended to induce more IL-2+ IFN-γ+ CD4 T cells. Several significant correlations were identified between specific antibody responses and antigen-responsive T cell clusters. The best correlations were not necessarily observed with the strongest antibody or T cell responses.ConclusionIn the complex HVTN105 dataset, alternative analysis methods increased sensitivity of the detection of antigen-specific T cells; increased the number of identified vaccine responders; identified a small IL-21-producing T cell population; and demonstrated significant correlations between specific T cell populations and serum antibody responses. Multiple analysis strategies may be valuable for extracting the most information from large, complex studies

    <scp>T</scp> Lymphocytes: Plasticity of Subsets

    Full text link

    SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects

    No full text
    AbstractBiological differences of interest in large, high-dimensional flow cytometry datasets are often obscured by undesired variations caused by differences in cytometers, reagents, or operators. Each variation type requires a different correction strategy, and their unknown contributions to overall variability hinder automated correction. We now describe swiftReg, an automated method that reduces undesired sources of variability between samples and particularly between batches. A high-resolution cluster map representing the multidimensional data is generated using the SWIFT algorithm, and shifts in cluster positions between samples are measured. Subpopulations are aligned between samples by displacing cell parameter values according to registration vectors derived from independent or locally-averaged cluster shifts. Batch variation is addressed by registering batch control or consensus samples, and applying the resulting shifts to individual samples. swiftReg selectively reduces batch variation, enhancing detection of biological differences. swiftReg outputs registered datasets as standard .FCS files to facilitate further analysis by other tools.</jats:p

    T Regulatory and Primed Uncommitted CD4 T Cells Express CD73, Which Suppresses Effector CD4 T Cells by Converting 5′-Adenosine Monophosphate to Adenosine

    Full text link
    Abstract CD73 (5′-ectonucleotidase) is expressed by two distinct mouse CD4 T cell populations: CD25+ (FoxP3+) T regulatory (Treg) cells that suppress T cell proliferation but do not secrete IL-2, and CD25− uncommitted primed precursor Th (Thpp) cells that secrete IL-2 but do not suppress in standard Treg suppressor assays. CD73 on both Treg and Thpp cells converted extracellular 5′-AMP to adenosine. Adenosine suppressed proliferation and cytokine secretion of Th1 and Th2 effector cells, even when target cells were activated by anti-CD3 and anti-CD28. This represents an additional suppressive mechanism of Treg cells and a previously unrecognized suppressive activity of Thpp cells. Infiltration of either Treg or Thpp cells at inflammatory sites could potentially convert 5′-AMP generated by neutrophils or dying cells into the anti-inflammatory mediator adenosine, thus dampening excessive immune reactions.</jats:p

    Der Exportvertrag

    No full text
    corecore