1,562 research outputs found

    A Thallium Mediated Route to \u3cem\u3eσ\u3c/em\u3e-Arylalkynyl Complexes of Bipyridyltricarbonylrhenium(I)

    Get PDF
    A simple, one-pot preparation of rhenium(I) σ-arylalkynyl complexes is reported using thallium(I) hexafluorophosphate as a halogen abstraction agent. This new route to rhenium σ-alkynyls enjoys higher yields compared to analogous preparations using silver salts by eliminating potential electrochemical degradation pathways

    Phase glass and zero-temperature phase transition in a randomly frustrated two-dimensional quantum rotor model

    Full text link
    The ground state of the quantum rotor model in two dimensions with random phase frustration is investigated. Extensive Monte Carlo simulations are performed on the corresponding (2+1)-dimensional classical model under the entropic sampling scheme. For weak quantum fluctuation, the system is found to be in a phase glass phase characterized by a finite compressibility and a finite value for the Edwards-Anderson order parameter, signifying long-ranged phase rigidity in both spatial and imaginary time directions. Scaling properties of the model near the transition to the gapped, Mott insulator state with vanishing compressibility are analyzed. At the quantum critical point, the dynamic exponent zdyn1.17z_{\rm dyn}\simeq 1.17 is greater than one. Correlation length exponents in the spatial and imaginary time directions are given by ν0.73\nu\simeq 0.73 and νz0.85\nu_z\simeq 0.85, respectively, both assume values greater than 0.6723 of the pure case. We speculate that the phase glass phase is superconducting rather than metallic in the zero current limit.Comment: 14 pages, 4 figures, to appear in JSTA

    Organizational learning and emotion: constructing collective meaning in support of strategic themes

    Get PDF
    Missing in the organizational learning literature is an integrative framework that reflects the emotional as well as the cognitive dynamics involved. Here, we take a step in this direction by focusing in depth over time (five years) on a selected organization which manufactures electronic equipment for the office industry. Drawing on personal construct theory, we define organizational learning as the collective re-construal of meaning in the direction of strategically significant themes. We suggest that emotions arise as members reflect on progress or lack of progress in achieving organizational learning. Our evidence suggests that invalidation – where organizational learning fails to correspond with expectations – gives rise to anxiety and frustration, while validation – where organizational learning is aligned with or exceeds expectations – evokes comfort or excitement. Our work aims to capture the key emotions involved as organizational learning proceeds

    Simulation Studies on the Stability of the Vortex-Glass Order

    Full text link
    The stability of the three-dimensional vortex-glass order in random type-II superconductors with point disorder is investigated by equilibrium Monte Carlo simulations based on a lattice XY model with a uniform field threading the system. It is found that the vortex-glass order, which stably exists in the absence of screening, is destroyed by the screenng effect, corroborating the previous finding based on the spatially isotropic gauge-glass model. Estimated critical exponents, however, deviate considerably from the values reported for the gauge-glass model.Comment: Minor modifications made, a few referenced added; to appear in J. Phys. Soc. Jpn. Vol.69 No.1 (2000

    Phase Transition in the Two-Dimensional Gauge Glass

    Full text link
    The two-dimensional XY gauge glass, which describes disordered superconducting grains in strong magnetic fields, is investigated, with regard to the possibility of a glass transition. We compute the glass susceptibility and the correlation function of the system via extensive numerical simulations and perform the finite-size scaling analysis. This gives strong evidence for a finite-temperature transition, which is expected to be of a novel type.Comment: 5pages, 3 figures, revtex, to appear in Phys. Rev.

    Two spin liquid phases in the spatially anisotropic triangular Heisenberg model

    Full text link
    The quantum spin-1/2 antiferromagnetic Heisenberg model on a two dimensional triangular lattice geometry with spatial anisotropy is relevant to describe materials like Cs2CuCl4{\rm Cs_2 Cu Cl_4} and organic compounds like {κ\kappa-(ET)2_2Cu2_2(CN)3_3}. The strength of the spatial anisotropy can increase quantum fluctuations and can destabilize the magnetically ordered state leading to non conventional spin liquid phases. In order to understand these intriguing phenomena, quantum Monte Carlo methods are used to study this model system as a function of the anisotropic strength, represented by the ratio J/JJ'/J between the intra-chain nearest neighbor coupling JJ and the inter-chain one JJ'. We have found evidence of two spin liquid regions. The first one is stable for small values of the coupling J'/J \alt 0.65, and appears gapless and fractionalized, whereas the second one is a more conventional spin liquid with a small spin gap and is energetically favored in the region 0.65\alt J'/J \alt 0.8. We have also shown that in both spin liquid phases there is no evidence of broken translation symmetry with dimer or spin-Peirls order or any broken spatial reflection symmetry of the lattice. The various phases are in good agreement with the experimental findings, thus supporting the existence of spin liquid phases in two dimensional quantum spin-1/2 systems.Comment: 35 pages, 24 figures, 3 table

    Ising Expansion for the Hubbard Model

    Full text link
    We develop series expansions for the ground state properties of the Hubbard model, by introducing an Ising anisotropy into the Hamiltonian. For the two-dimensional (2D) square lattice half-filled Hubbard model, the ground state energy, local moment, sublattice magnetization, uniform magnetic susceptibility and spin stiffness are calculated as a function of U/tU/t, where UU is the Coulomb constant and tt is the hopping parameter. Magnetic susceptibility data indicate a crossover around U4U\approx 4 between spin density wave antiferromagnetism and Heisenberg antiferromagnetism. Comparisons with Monte Carlo simulations, RPA result and mean field solutions are also made.Comment: 22 pages, 6 Postscript figures, Revte

    Gauge Theory for Quantum Spin Glasses

    Full text link
    The gauge theory for random spin systems is extended to quantum spin glasses to derive a number of exact and/or rigorous results. The transverse Ising model and the quantum gauge glass are shown to be gauge invariant. For these models, an identity is proved that the expectation value of the gauge invariant operator in the ferromagnetic limit is equal to the one in the classical equilibrium state on the Nishimori line. As a result, a set of inequalities for the correlation function are proved, which restrict the location of the ordered phase. It is also proved that there is no long-range order in the two-dimensional quantum gauge glass in the ground state. The phase diagram for the quantum XY Mattis model is determined.Comment: 15 pages, 2 figure

    Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen burkholderia pseudomallei K96243

    Get PDF
    Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin ‘tails’ and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle

    Effects of interladder couplings in the trellis lattice

    Full text link
    Strongly correlated models on coupled ladders in the presence of frustration, in particular the trellis lattice, are studied by numerical techniques. For the undoped case, the possibility of incommensurate peaks in the magnetic structure factor at low temperatures is suggested. In the doped case, our main conclusion for the trellis lattice is that by increasing the interladder coupling, the balance between the magnetic energy in the ladders and the kinetic energy in the zig-zag chains is altered leading eventually to the destruction of the hole pairs initially formed and localized in the ladders.Comment: final version, to appear in Physical Review
    corecore