5,540 research outputs found

    Independence, Relative Randomness, and PA Degrees

    Full text link
    We study pairs of reals that are mutually Martin-L\"{o}f random with respect to a common, not necessarily computable probability measure. We show that a generalized version of van Lambalgen's Theorem holds for non-computable probability measures, too. We study, for a given real AA, the \emph{independence spectrum} of AA, the set of all BB so that there exists a probability measure μ\mu so that μ{A,B}=0\mu\{A,B\} = 0 and (A,B)(A,B) is μ×μ\mu\times\mu-random. We prove that if AA is r.e., then no Δ20\Delta^0_2 set is in the independence spectrum of AA. We obtain applications of this fact to PA degrees. In particular, we show that if AA is r.e.\ and PP is of PA degree so that P̸TAP \not\geq_{T} A, then APT0A \oplus P \geq_{T} 0'

    ICT as learning media and research instrument: What eResearch can offer for those who research eLearning?

    Get PDF
    Students‘ interactions in digital learning environments are distributed over time and space, and many aspects of eLearning phenomenon cannot be investigated using traditional research approaches. At the same time, the possibility to collect digital data about students‘ online interactions and learning opens a range of new opportunities to use ICT as research tool and apply new research approaches. This symposium brings together some of the recent advancements in the area of ICT-enhanced research and aims to discuss future directions for methodological innovation in this area. The session will include four presentations that will explore different directions of ICT use for eLearning research

    Vortices in Bose-Einstein condensates - finite-size effects and the thermodynamic limit

    Full text link
    For a weakly-interacting Bose gas rotating in a harmonic trap we relate the yrast states of small systems (that can be treated exactly) to the thermodynamic limit (derived within the mean-field approximation). For a few dozens of atoms, the yrast line shows distinct quasi-periodic oscillations with increasing angular momentum that originate from the internal structure of the exact many-body states. These finite-size effects disappear in the thermodynamic limit, where the Gross-Pitaevskii approximation provides the exact energy to leading order in the number of particles N. However, the exact yrast states reveal significant structure not captured by the mean-field approximation: Even in the limit of large N, the corresponding mean-field solution accounts for only a fraction of the total weight of the exact quantum state.Comment: Phys Rev A, in pres

    Hexagons become second if symmetry is broken

    Get PDF
    Pattern formation on the free surface of a magnetic fluid subjected to a magnetic field is investigated experimentally. By tilting the magnetic field the symmetry can be broken in a controllable manner. When increasing the amplitude of the tilted field, the flat surface gives way to liquid ridges. A further increase results in a hysteretic transition to a pattern of stretched hexagons. The instabilities are detected by means of a linear array of magnetic hall sensors and compared with theoretical predictions.Comment: accepted for publication by Physical Review E/Rapid Communicatio

    Resonant Activation Phenomenon for Non-Markovian Potential-Fluctuation Processes

    Full text link
    We consider a generalization of the model by Doering and Gadoua to non-Markovian potential-switching generated by arbitrary renewal processes. For the Markovian switching process, we extend the original results by Doering and Gadoua by giving a complete description of the absorption process. For all non-Markovian processes having the first moment of the waiting time distributions, we get qualitatively the same results as in the Markovian case. However, for distributions without the first moment, the mean first passage time curves do not exhibit the resonant activation minimum. We thus come to the conjecture that the generic mechanism of the resonant activation fails for fluctuating processes widely deviating from Markovian.Comment: RevTeX 4, 5 pages, 4 figures; considerably shortened version accepted as a brief report to Phys. Rev.

    Circular 78

    Get PDF
    Historically, sales of exotic meats have been limited only by supply. As supply has increased in recent years, national and international exotic game markets have grown rapidly. In the United States, growth has occurred primarily in the restaurant section, although over-the-counter sales have also increased. The Alaskan reindeer industry is exploring the potential of expanding its meat sales as well as antler sales. Meat production increased from 320,000 pounds in 1987 to 432,000 pounds in 1988. This production increase is reflected in a 27 percent increase in dollar value (Alaska Crop and Livestock Reporting Service, 1989). Under current management procedures, potential meat production has been estimated at 500,000 pounds (Pearson and Lewis, 1988). Any future market expansion is likely to occur in urban Alaska and in areas outside the state (Jones, 1988)

    Energy Flow Puzzle of Soliton Ratchets

    Full text link
    We study the mechanism of directed energy transport for soliton ratchets. The energy flow appears due to the progressive motion of a soliton (kink) which is an energy carrier. However, the energy current formed by internal system deformations (the total field momentum) is zero. We solve the underlying puzzle by showing that the energy flow is realized via an {\it inhomogeneous} energy exchange between the system and the external ac driving. Internal kink modes are unambiguously shown to be crucial for that transport process to take place. We also discuss effects of spatial discretization and combination of ac and dc external drivings.Comment: 4 pages, 3 figures, submitted to PR

    Nonequilibrium coupled Brownian phase oscillators

    Full text link
    A model of globally coupled phase oscillators under equilibrium (driven by Gaussian white noise) and nonequilibrium (driven by symmetric dichotomic fluctuations) is studied. For the equilibrium system, the mean-field state equation takes a simple form and the stability of its solution is examined in the full space of order parameters. For the nonequilbrium system, various asymptotic regimes are obtained in a closed analytical form. In a general case, the corresponding master equations are solved numerically. Moreover, the Monte-Carlo simulations of the coupled set of Langevin equations of motion is performed. The phase diagram of the nonequilibrium system is presented. For the long time limit, we have found four regimes. Three of them can be obtained from the mean-field theory. One of them, the oscillating regime, cannot be predicted by the mean-field method and has been detected in the Monte-Carlo numerical experiments.Comment: 9 pages 8 figure

    Transition from anomalous to normal hysteresis in a system of coupled Brownian motors: a mean field approach

    Full text link
    We address a recently introduced model describing a system of periodically coupled nonlinear phase oscillators submitted to multiplicative white noises, wherein a ratchet-like transport mechanism arises through a symmetry-breaking noise-induced nonequilibrium phase transition. Numerical simulations of this system reveal amazing novel features such as negative zero-bias conductance and anomalous hysteresis, explained resorting to a strong-coupling analysis in the thermodynamic limit. Using an explicit mean-field approximation we explore the whole ordered phase finding a transition from anomalous to normal hysteresis inside this phase, estimating its locus and identifying (within this scheme) a mechanism whereby it takes place.Comment: RevTex, 21 pgs, 15 figures. Submited to Physical Review E (2000

    Fluid pumped by magnetic stress

    Full text link
    A magnetic field rotating on the free surface of a ferrofluid layer is shown to induce considerable fluid motion toward the direction the field is rolling. The measured flow velocity i) increases with the square of the magnetic field amplitude, ii) is proportional to the thickness of the fluid layer, and iii) has a maximum at a driving frequency of about 3 kHz. The pumping speed can be estimated with a two-dimensional flow model.Comment: 3 pages, 4 figure
    corecore