958 research outputs found
Quicksort with unreliable comparisons: a probabilistic analysis
We provide a probabilistic analysis of the output of Quicksort when
comparisons can err.Comment: 29 pages, 3 figure
Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics
Simple heuristics often show a remarkable performance in practice for
optimization problems. Worst-case analysis often falls short of explaining this
performance. Because of this, "beyond worst-case analysis" of algorithms has
recently gained a lot of attention, including probabilistic analysis of
algorithms.
The instances of many optimization problems are essentially a discrete metric
space. Probabilistic analysis for such metric optimization problems has
nevertheless mostly been conducted on instances drawn from Euclidean space,
which provides a structure that is usually heavily exploited in the analysis.
However, most instances from practice are not Euclidean. Little work has been
done on metric instances drawn from other, more realistic, distributions. Some
initial results have been obtained by Bringmann et al. (Algorithmica, 2013),
who have used random shortest path metrics on complete graphs to analyze
heuristics.
The goal of this paper is to generalize these findings to non-complete
graphs, especially Erd\H{o}s-R\'enyi random graphs. A random shortest path
metric is constructed by drawing independent random edge weights for each edge
in the graph and setting the distance between every pair of vertices to the
length of a shortest path between them with respect to the drawn weights. For
such instances, we prove that the greedy heuristic for the minimum distance
maximum matching problem, the nearest neighbor and insertion heuristics for the
traveling salesman problem, and a trivial heuristic for the -median problem
all achieve a constant expected approximation ratio. Additionally, we show a
polynomial upper bound for the expected number of iterations of the 2-opt
heuristic for the traveling salesman problem.Comment: An extended abstract appeared in the proceedings of WALCOM 201
Constraint Satisfaction with Counting Quantifiers
We initiate the study of constraint satisfaction problems (CSPs) in the
presence of counting quantifiers, which may be seen as variants of CSPs in the
mould of quantified CSPs (QCSPs). We show that a single counting quantifier
strictly between exists^1:=exists and exists^n:=forall (the domain being of
size n) already affords the maximal possible complexity of QCSPs (which have
both exists and forall), being Pspace-complete for a suitably chosen template.
Next, we focus on the complexity of subsets of counting quantifiers on clique
and cycle templates. For cycles we give a full trichotomy -- all such problems
are in L, NP-complete or Pspace-complete. For cliques we come close to a
similar trichotomy, but one case remains outstanding. Afterwards, we consider
the generalisation of CSPs in which we augment the extant quantifier
exists^1:=exists with the quantifier exists^j (j not 1). Such a CSP is already
NP-hard on non-bipartite graph templates. We explore the situation of this
generalised CSP on bipartite templates, giving various conditions for both
tractability and hardness -- culminating in a classification theorem for
general graphs. Finally, we use counting quantifiers to solve the complexity of
a concrete QCSP whose complexity was previously open
A general lower bound for collaborative tree exploration
We consider collaborative graph exploration with a set of agents. All
agents start at a common vertex of an initially unknown graph and need to
collectively visit all other vertices. We assume agents are deterministic,
vertices are distinguishable, moves are simultaneous, and we allow agents to
communicate globally. For this setting, we give the first non-trivial lower
bounds that bridge the gap between small () and large () teams of agents. Remarkably, our bounds tightly connect to existing results
in both domains.
First, we significantly extend a lower bound of
by Dynia et al. on the competitive ratio of a collaborative tree exploration
strategy to the range for any . Second,
we provide a tight lower bound on the number of agents needed for any
competitive exploration algorithm. In particular, we show that any
collaborative tree exploration algorithm with agents has a
competitive ratio of , while Dereniowski et al. gave an algorithm
with agents and competitive ratio , for any
and with denoting the diameter of the graph. Lastly, we
show that, for any exploration algorithm using agents, there exist
trees of arbitrarily large height that require rounds, and we
provide a simple algorithm that matches this bound for all trees
Drawing Trees with Perfect Angular Resolution and Polynomial Area
We study methods for drawing trees with perfect angular resolution, i.e.,
with angles at each node v equal to 2{\pi}/d(v). We show:
1. Any unordered tree has a crossing-free straight-line drawing with perfect
angular resolution and polynomial area.
2. There are ordered trees that require exponential area for any
crossing-free straight-line drawing having perfect angular resolution.
3. Any ordered tree has a crossing-free Lombardi-style drawing (where each
edge is represented by a circular arc) with perfect angular resolution and
polynomial area. Thus, our results explore what is achievable with
straight-line drawings and what more is achievable with Lombardi-style
drawings, with respect to drawings of trees with perfect angular resolution.Comment: 30 pages, 17 figure
Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that
We report on some recent developments in the search for optimal network
topologies. First we review some basic concepts on spectral graph theory,
including adjacency and Laplacian matrices, and paying special attention to the
topological implications of having large spectral gaps. We also introduce
related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we
discuss two different dynamical feautures of networks: synchronizability and
flow of random walkers and so that they are optimized if the corresponding
Laplacian matrix have a large spectral gap. From this, we show, by developing a
numerical optimization algorithm that maximum synchronizability and fast random
walk spreading are obtained for a particular type of extremely homogeneous
regular networks, with long loops and poor modular structure, that we call
entangled networks. These turn out to be related to Ramanujan and Cage graphs.
We argue also that these graphs are very good finite-size approximations to
Bethe lattices, and provide almost or almost optimal solutions to many other
problems as, for instance, searchability in the presence of congestion or
performance of neural networks. Finally, we study how these results are
modified when studying dynamical processes controlled by a normalized (weighted
and directed) dynamics; much more heterogeneous graphs are optimal in this
case. Finally, a critical discussion of the limitations and possible extensions
of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted
for pub. in JSTA
From Low-Distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking
The existence of quantum uncertainty relations is the essential reason that
some classically impossible cryptographic primitives become possible when
quantum communication is allowed. One direct operational manifestation of these
uncertainty relations is a purely quantum effect referred to as information
locking. A locking scheme can be viewed as a cryptographic protocol in which a
uniformly random n-bit message is encoded in a quantum system using a classical
key of size much smaller than n. Without the key, no measurement of this
quantum state can extract more than a negligible amount of information about
the message, in which case the message is said to be "locked". Furthermore,
knowing the key, it is possible to recover, that is "unlock", the message. In
this paper, we make the following contributions by exploiting a connection
between uncertainty relations and low-distortion embeddings of L2 into L1. We
introduce the notion of metric uncertainty relations and connect it to
low-distortion embeddings of L2 into L1. A metric uncertainty relation also
implies an entropic uncertainty relation. We prove that random bases satisfy
uncertainty relations with a stronger definition and better parameters than
previously known. Our proof is also considerably simpler than earlier proofs.
We apply this result to show the existence of locking schemes with key size
independent of the message length. We give efficient constructions of metric
uncertainty relations. The bases defining these metric uncertainty relations
are computable by quantum circuits of almost linear size. This leads to the
first explicit construction of a strong information locking scheme. Moreover,
we present a locking scheme that is close to being implementable with current
technology. We apply our metric uncertainty relations to exhibit communication
protocols that perform quantum equality testing.Comment: 60 pages, 5 figures. v4: published versio
- …
