4,629 research outputs found
Translation of Time-Reversal Violation in the Neutral K-Meson System into a Table-Top Mechanical System
Weak interactions break time-reversal (T) symmetry in the two-state system of
neutral K mesons. We present and discuss a two-state mechanical system, a
Foucault-type pendulum on a rotating table, for a full representation of K0
K0bar transitions by the pendulum motions including T violation. The pendulum
moves with two different oscillation frequencies and two different magnetic
dampings. Its equation of motion is identical with the differential equation
for the real part of the CPT-symmetric K-meson wave function. The pendulum is
able to represent microscopic CP and T violation with CPT symmetry owing to the
macroscopic Coriolis force which breaks the symmetry under reversal-of-motion.
Video clips of the pendulum motions are shown as supplementary material.Comment: 11 pages, 5 figures, 1 external url with video clip
Space-charge transport limits of ion beams in periodic quadrupole focusing channels
It has been empirically observed in both experiments and particle-in-cell
simulations that space-charge-dominated beams suffer strong growth in
statistical phase-space area (degraded quality) and particle losses in
alternating gradient quadrupole transport channels when the undepressed phase
advance sigma_0 increases beyond about 85 degrees per lattice period. Although
this criterion has been used extensively in practical designs of strong
focusing intense beam transport lattices, the origin of the limit has not been
understood. We propose a mechanism for the transport limit resulting from
classes of halo particle resonances near the core of the beam that allow
near-edge particles to rapidly increase in oscillation amplitude when the
space-charge intensity and the flutter of the matched beam envelope are both
sufficiently large. When coupled with a diffuse beam edge and/or perturbations
internal to the beam core that can drive particles outside the edge, this
mechanism can result in large and rapid halo-driven increases in the
statistical phase-space area of the beam, lost particles, and degraded
transport. A core-particle model is applied to parametrically analyze this
process. Extensive self-consistent particle in cell simulations are employed to
better quantify space-charge limit and verify core-particle model predictions.Comment: 17 pages, 5 figures. Submitted to Nuclear Instruments and Methods A.
Includes a long version of a conference talk (trans_limits_talk.pdf)
presented on the topic at the "Coulomb'05 -- High Intensity Beam Dynamics"
workshop (Senigallia, Italy, 12-16 September 2005). This talk presents
further supporting information/plots not included in the abbreviated,
draft-format manuscrip
FOREVER: Fault/intrusiOn REmoVal through Evolution & Recovery
The goal of the FOREVER project is to develop a service for Fault/intrusiOn REmoVal through Evolution & Recovery. In order to achieve this goal, our work addresses three main tasks: the definition of the FOREVER service architecture; the analysis of how diversity techniques can improve resilience; and the evaluation of the FOREVER service. The FOREVER service is an important contribution to intrustion-tolerant replication middleware and significantly enhances the resilience
Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications
Phase mixing of chaotic orbits exponentially distributes these orbits through
their accessible phase space. This phenomenon, commonly called ``chaotic
mixing'', stands in marked contrast to phase mixing of regular orbits which
proceeds as a power law in time. It is operationally irreversible; hence, its
associated e-folding time scale sets a condition on any process envisioned for
emittance compensation. A key question is whether beams can support chaotic
orbits, and if so, under what conditions? We numerically investigate the
parameter space of three-dimensional thermal-equilibrium beams with space
charge, confined by linear external focusing forces, to determine whether the
associated potentials support chaotic orbits. We find that a large subset of
the parameter space does support chaos and, in turn, chaotic mixing. Details
and implications are enumerated.Comment: 39 pages, including 14 figure
Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices
A new iterative method is developed to numerically calculate the periodic,
matched beam envelope solution of the coupled Kapchinskij-Vladimirskij (KV)
equations describing the transverse evolution of a beam in a periodic, linear
focusing lattice of arbitrary complexity. Implementation of the method is
straightforward. It is highly convergent and can be applied to all usual
parameterizations of the matched envelope solutions. The method is applicable
to all classes of linear focusing lattices without skew couplings, and also
applies to all physically achievable system parameters -- including where the
matched beam envelope is strongly unstable. Example applications are presented
for periodic solenoidal and quadrupole focusing lattices. Convergence
properties are summarized over a wide range of system parameters.Comment: 20 pages, 5 figures, Mathematica source code provide
Chaos and the continuum limit in nonneutral plasmas and charged particle beams
This paper examines discreteness effects in nearly collisionless N-body
systems of charged particles interacting via an unscreened r^-2 force, allowing
for bulk potentials admitting both regular and chaotic orbits. Both for
ensembles and individual orbits, as N increases there is a smooth convergence
towards a continuum limit. Discreteness effects are well modeled by Gaussian
white noise with relaxation time t_R = const * (N/log L)t_D, with L the Coulomb
logarithm and t_D the dynamical time scale. Discreteness effects accelerate
emittance growth for initially localised clumps. However, even allowing for
discreteness effects one can distinguish between orbits which, in the continuum
limit, feel a regular potential, so that emittance grows as a power law in
time, and chaotic orbits, where emittance grows exponentially. For sufficiently
large N, one can distinguish two different `kinds' of chaos. Short range
microchaos, associated with close encounters between charges, is a generic
feature, yielding large positive Lyapunov exponents X_N which do not decrease
with increasing N even if the bulk potential is integrable. Alternatively,
there is the possibility of larger scale macrochaos, characterised by smaller
Lyapunov exponents X_S, which is present only if the bulk potential is chaotic.
Conventional computations of Lyapunov exponents probe X_N, leading to the
oxymoronic conclusion that N-body orbits which look nearly regular and have
sharply peaked Fourier spectra are `very chaotic.' However, the `range' of the
microchaos, set by the typical interparticle spacing, decreases as N increases,
so that, for large N, this microchaos, albeit very strong, is largely
irrelevant macroscopically. A more careful numerical analysis allows one to
estimate both X_N and X_S.Comment: 13 pages plus 17 figure
Does Media Affect Learning: Where Are We Now?
It is time to extinguish the argument as to whether or not the media of 1983 could, should or would affect learning outcomes. The technological advances that have occurred in the 20 years since Clark sparked the debate and Kozma fanned the flames have made the question irrelevant. High-speed, portable, reasonably priced computers, the Internet, and the World Wide Web have changed the face of how, when, and where learning occurs. The media of 2004 does affect learning. The question is no longer if; the question is how
High-technology elements for thin-film photovoltaic applications :a demand-supply outlook on the basis of current energy and PV market growths scenarios
On the basis of current energy and photovoltaic market outlooks and scenarios, the total growth rate potential of thin-film photovoltaic (PV) techniques have been analysed and calculated. For the European Photovoltaic Industry Association (EPIA) Advanced Scenario [1] total thin-film PV annual production values of 2.4 GWp for 2010, 25 GWp for 2020 and 132 GWp for 2030, were calculated. These values were used to estimate individual annual production for each thin-film technology in order to predict the future thin-film PV material needs for indium, selenium, tellurium, germanium and gallium. Considering global reserve and refinery data, this work also provides estimations on the current static depletion time of these elements. Such estimations are of course an approximation but emphasise that some of the considered elements are highly constrained when assuming steady production rates. This is particularly the case for indium, for which we calculated a static depletion time of 22 years. Selenium and tellurium could be also in danger of running out soon if their consumption increases. This implies that additional efforts are needed in the exploration and evaluation of mineral deposits which can supply these scarce elements such as the deposits of the Iberian Pyrite Belt
- …
