4,629 research outputs found

    Translation of Time-Reversal Violation in the Neutral K-Meson System into a Table-Top Mechanical System

    Full text link
    Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K mesons. We present and discuss a two-state mechanical system, a Foucault-type pendulum on a rotating table, for a full representation of K0 K0bar transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical with the differential equation for the real part of the CPT-symmetric K-meson wave function. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are shown as supplementary material.Comment: 11 pages, 5 figures, 1 external url with video clip

    Space-charge transport limits of ion beams in periodic quadrupole focusing channels

    Get PDF
    It has been empirically observed in both experiments and particle-in-cell simulations that space-charge-dominated beams suffer strong growth in statistical phase-space area (degraded quality) and particle losses in alternating gradient quadrupole transport channels when the undepressed phase advance sigma_0 increases beyond about 85 degrees per lattice period. Although this criterion has been used extensively in practical designs of strong focusing intense beam transport lattices, the origin of the limit has not been understood. We propose a mechanism for the transport limit resulting from classes of halo particle resonances near the core of the beam that allow near-edge particles to rapidly increase in oscillation amplitude when the space-charge intensity and the flutter of the matched beam envelope are both sufficiently large. When coupled with a diffuse beam edge and/or perturbations internal to the beam core that can drive particles outside the edge, this mechanism can result in large and rapid halo-driven increases in the statistical phase-space area of the beam, lost particles, and degraded transport. A core-particle model is applied to parametrically analyze this process. Extensive self-consistent particle in cell simulations are employed to better quantify space-charge limit and verify core-particle model predictions.Comment: 17 pages, 5 figures. Submitted to Nuclear Instruments and Methods A. Includes a long version of a conference talk (trans_limits_talk.pdf) presented on the topic at the "Coulomb'05 -- High Intensity Beam Dynamics" workshop (Senigallia, Italy, 12-16 September 2005). This talk presents further supporting information/plots not included in the abbreviated, draft-format manuscrip

    FOREVER: Fault/intrusiOn REmoVal through Evolution & Recovery

    Get PDF
    The goal of the FOREVER project is to develop a service for Fault/intrusiOn REmoVal through Evolution & Recovery. In order to achieve this goal, our work addresses three main tasks: the definition of the FOREVER service architecture; the analysis of how diversity techniques can improve resilience; and the evaluation of the FOREVER service. The FOREVER service is an important contribution to intrustion-tolerant replication middleware and significantly enhances the resilience

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices

    Full text link
    A new iterative method is developed to numerically calculate the periodic, matched beam envelope solution of the coupled Kapchinskij-Vladimirskij (KV) equations describing the transverse evolution of a beam in a periodic, linear focusing lattice of arbitrary complexity. Implementation of the method is straightforward. It is highly convergent and can be applied to all usual parameterizations of the matched envelope solutions. The method is applicable to all classes of linear focusing lattices without skew couplings, and also applies to all physically achievable system parameters -- including where the matched beam envelope is strongly unstable. Example applications are presented for periodic solenoidal and quadrupole focusing lattices. Convergence properties are summarized over a wide range of system parameters.Comment: 20 pages, 5 figures, Mathematica source code provide

    Chaos and the continuum limit in nonneutral plasmas and charged particle beams

    Get PDF
    This paper examines discreteness effects in nearly collisionless N-body systems of charged particles interacting via an unscreened r^-2 force, allowing for bulk potentials admitting both regular and chaotic orbits. Both for ensembles and individual orbits, as N increases there is a smooth convergence towards a continuum limit. Discreteness effects are well modeled by Gaussian white noise with relaxation time t_R = const * (N/log L)t_D, with L the Coulomb logarithm and t_D the dynamical time scale. Discreteness effects accelerate emittance growth for initially localised clumps. However, even allowing for discreteness effects one can distinguish between orbits which, in the continuum limit, feel a regular potential, so that emittance grows as a power law in time, and chaotic orbits, where emittance grows exponentially. For sufficiently large N, one can distinguish two different `kinds' of chaos. Short range microchaos, associated with close encounters between charges, is a generic feature, yielding large positive Lyapunov exponents X_N which do not decrease with increasing N even if the bulk potential is integrable. Alternatively, there is the possibility of larger scale macrochaos, characterised by smaller Lyapunov exponents X_S, which is present only if the bulk potential is chaotic. Conventional computations of Lyapunov exponents probe X_N, leading to the oxymoronic conclusion that N-body orbits which look nearly regular and have sharply peaked Fourier spectra are `very chaotic.' However, the `range' of the microchaos, set by the typical interparticle spacing, decreases as N increases, so that, for large N, this microchaos, albeit very strong, is largely irrelevant macroscopically. A more careful numerical analysis allows one to estimate both X_N and X_S.Comment: 13 pages plus 17 figure

    Does Media Affect Learning: Where Are We Now?

    Get PDF
    It is time to extinguish the argument as to whether or not the media of 1983 could, should or would affect learning outcomes. The technological advances that have occurred in the 20 years since Clark sparked the debate and Kozma fanned the flames have made the question irrelevant. High-speed, portable, reasonably priced computers, the Internet, and the World Wide Web have changed the face of how, when, and where learning occurs. The media of 2004 does affect learning. The question is no longer if; the question is how

    High-technology elements for thin-film photovoltaic applications :a demand-supply outlook on the basis of current energy and PV market growths scenarios

    Get PDF
    On the basis of current energy and photovoltaic market outlooks and scenarios, the total growth rate potential of thin-film photovoltaic (PV) techniques have been analysed and calculated. For the European Photovoltaic Industry Association (EPIA) Advanced Scenario [1] total thin-film PV annual production values of 2.4 GWp for 2010, 25 GWp for 2020 and 132 GWp for 2030, were calculated. These values were used to estimate individual annual production for each thin-film technology in order to predict the future thin-film PV material needs for indium, selenium, tellurium, germanium and gallium. Considering global reserve and refinery data, this work also provides estimations on the current static depletion time of these elements. Such estimations are of course an approximation but emphasise that some of the considered elements are highly constrained when assuming steady production rates. This is particularly the case for indium, for which we calculated a static depletion time of 22 years. Selenium and tellurium could be also in danger of running out soon if their consumption increases. This implies that additional efforts are needed in the exploration and evaluation of mineral deposits which can supply these scarce elements such as the deposits of the Iberian Pyrite Belt
    corecore