307 research outputs found

    Do (and say) as I say: Linguistic adaptation in human-computer dialogs

    Get PDF
    © Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. This article has been made available through the Brunel Open Access Publishing Fund.There is strong research evidence showing that people naturally align to each other’s vocabulary, sentence structure, and acoustic features in dialog, yet little is known about how the alignment mechanism operates in the interaction between users and computer systems let alone how it may be exploited to improve the efficiency of the interaction. This article provides an account of lexical alignment in human–computer dialogs, based on empirical data collected in a simulated human–computer interaction scenario. The results indicate that alignment is present, resulting in the gradual reduction and stabilization of the vocabulary-in-use, and that it is also reciprocal. Further, the results suggest that when system and user errors occur, the development of alignment is temporarily disrupted and users tend to introduce novel words to the dialog. The results also indicate that alignment in human–computer interaction may have a strong strategic component and is used as a resource to compensate for less optimal (visually impoverished) interaction conditions. Moreover, lower alignment is associated with less successful interaction, as measured by user perceptions. The article distills the results of the study into design recommendations for human–computer dialog systems and uses them to outline a model of dialog management that supports and exploits alignment through mechanisms for in-use adaptation of the system’s grammar and lexicon

    A paradox of syntactic priming: why response tendencies show priming for passives, and response latencies show priming for actives

    Get PDF
    Speakers tend to repeat syntactic structures across sentences, a phenomenon called syntactic priming. Although it has been suggested that repeating syntactic structures should result in speeded responses, previous research has focused on effects in response tendencies. We investigated syntactic priming effects simultaneously in response tendencies and response latencies for active and passive transitive sentences in a picture description task. In Experiment 1, there were priming effects in response tendencies for passives and in response latencies for actives. However, when participants' pre-existing preference for actives was altered in Experiment 2, syntactic priming occurred for both actives and passives in response tendencies as well as in response latencies. This is the first investigation of the effects of structure frequency on both response tendencies and latencies in syntactic priming. We discuss the implications of these data for current theories of syntactic processing

    Allosteric Modulation of the HIV-1 gp120-gp41 Association Site by Adjacent gp120 Variable Region 1 (V1) N-Glycans Linked to Neutralization Sensitivity

    Get PDF
    The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb). Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/ or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and Cterminal segments of gp120 and the disulfide-bonded region (DSR) of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D) with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn136 in V1 (T138N mutation) inconjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N139INN sequence, which ablates the overlapping Asn141-Asn142-Ser-Ser potential N-linked glycosylation sequons inV1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu593, Trp596 and Lys601. The 136 and/or 142glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan shield in a setting of NAb selection

    The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis

    Get PDF
    The Dnmt2 enzyme utilizes the catalytic mechanism of eukaryotic DNA methyltransferases to methylate several tRNAs at cytosine 38. Dnmt2 mutant mice, flies, and plants were reported to be viable and fertile, and the biological function of Dnmt2 has remained elusive. Here, we show that endochondral ossification is delayed in newborn Dnmt2-deficient mice, which is accompanied by a reduction of the haematopoietic stem and progenitor cell population and a cell-autonomous defect in their differentiation. RNA bisulfite sequencing revealed that Dnmt2 methylates C38 of tRNA Asp(GTC), Gly(GCC), and Val(AAC), thus preventing tRNA fragmentation. Proteomic analyses from primary bone marrow cells uncovered systematic differences in protein expression that are due to specific codon mistranslation by tRNAs lacking Dnmt2-dependent methylation. Our observations demonstrate that Dnmt2 plays an important role in haematopoiesis and define a novel function of C38 tRNA methylation in the discrimination of near-cognate codons, thereby ensuring accurate polypeptide synthesis

    Faunistic Composition, Ecological Properties and Zoogeographical Composition of the Family Elateridae (Coleoptera) of the Central Anatolian Region of Turkey

    Get PDF
    The focus of this study was to understand the faunistic composition, ecological properties and zoogeographical composition of Elateridae (Coleoptera) of the Central Anatolian region. 72 species belonging to seven subfamilies and 25 genera were identified. The major part of the Elateridae fauna of the Central Anatolian region is formed by the subfamilies Elaterinae and Cardiophorinae. The genus Cardiophorus was the most species-rich genus. The species composition of the Elateridae fauna of the Central Anatolian region is partially consistent with known Elateridae fauna of Turkey. The Central Anatolian region shares most species with the European part of the Western Palaearctic as does the Elateridae fauna of Turkey. Detailed localities of nine species are given for the first time for Turkey, with emphasis on the Central Anatolian region

    Long-Term Survival in a Large Cohort of Patients with Venous Thrombosis: Incidence and Predictors

    Get PDF
    Linda Flinterman and colleagues report on the long-term mortality rate for individuals who have experienced a first venous thrombosis or pulmonary embolism. They describe an ongoing elevated risk of death for individuals who had experienced a venous thrombosis or pulmonary embolism as compared to controls, for up to eight years after the event

    Escape from Autologous Neutralizing Antibodies in Acute/Early Subtype C HIV-1 Infection Requires Multiple Pathways

    Get PDF
    One aim for an HIV vaccine is to elicit neutralizing antibodies (Nab) that can limit replication of genetically diverse viruses and prevent establishment of a new infection. Thus, identifying the strengths and weaknesses of Nab during the early stages of natural infection could prove useful in achieving this goal. Here we demonstrate that viral escape readily occurred despite the development of high titer autologous Nab in two subjects with acute/early subtype C infection. To provide a detailed portrayal of the escape pathways, Nab resistant variants identified at multiple time points were used to create a series of envelope (Env) glycoprotein chimeras and mutants within the background of a corresponding newly transmitted Env. In one subject, Nab escape was driven predominantly by changes in the region of gp120 that extends from the beginning of the V3 domain to the end of the V5 domain (V3V5). However, Nab escape pathways in this subject oscillated and at times required cooperation between V1V2 and the gp41 ectodomain. In the second subject, escape was driven by changes in V1V2. This V1V2-dependent escape pathway was retained over time, and its utility was reflected in the virus's ability to escape from two distinct monoclonal antibodies (Mabs) derived from this same patient via introduction of a single potential N-linked glycosylation site in V2. Spatial representation of the sequence changes in gp120 suggested that selective pressure acted upon the same regions of Env in these two subjects, even though the Env domains that drove escape were different. Together the findings argue that a single mutational pathway is not sufficient to confer escape in early subtype C HIV-1 infection, and support a model in which multiple strategies, including potential glycan shifts, direct alteration of an epitope sequence, and cooperative Env domain conformational masking, are used to evade neutralization

    Molecular Epidemiology and Evolution of Human Respiratory Syncytial Virus and Human Metapneumovirus

    Get PDF
    Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, the Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups

    Prognostic Factors Affecting Outcome after Allogeneic Transplantation for Hematological Malignancies from Unrelated Donors : Results from a Randomized Trial

    Get PDF
    Several prognostic factors for the outcome after allogeneic hematopoietic stem-cell transplant (HSCT) from matched unrelated donors have been postulated from registry data; however, data from randomized trials are lacking. We present analyses on the effects of patient-related, donor-related, and treatment-related prognostic factors on acute GVHD (aGVHD), chronic GVHD (cGVHD), relapse, nonrelapse mortality (NRM), disease-free survival (DFS), and overall survival (OS) in a randomized, multicenter, open-label, phase III trial comparing standard graft-versus-host-disease (GVHD) prophylaxis with and without pretransplantation ATG-Fresenius (ATG-F) in 201 adult patients receiving myeloablative conditioning before HSCT from HLA-A, HLA-B antigen, HLA-DRB1, HLA-DQB1 allele matched unrelated donors. High-resolution testing (allele) of HLA-A, HLA-B, and HLA-C were obtained after study closure, and the impact of an HLA 10/10 4-digit mismatch on outcome and on the treatment effect of ATG-F versus control investigated. Advanced disease was a negative factor for relapse, DFS, and OS. Donor age ≥40 adversely affected the risk of aGVHD III-IV, extensive cGVHD, and OS. Younger donors are to be preferred in unrelated donor transplantation. Advanced disease patients need special precautions to improve outcome. The degree of mismatch had no major influence on the positive effect of ATG-F on the reduction of aGVHD and cGVHD. © 2012 American Society for Blood and Marrow Transplantation
    corecore