50 research outputs found
Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells
Magnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties. We analytically demonstrate that the magnetic field in the sensing area is enhanced by our metamaterial shell by a known factor that depends on the shell radii ratio. When the applied field is non-uniform, as for dipolar magnetic field sources, field gradient is increased as well. A proof-of-concept experimental realization confirms the theoretical predictions. The metamaterial shell is also shown to concentrate time-dependent magnetic fields upto frequencies of 100 kHz
Measurement of the I-V characteristics of superconducting dipoles : automatic compensation of low frequency drift
An Example Is Worth a Thousand Words: Composite Operation Modeling By-Example
Predefined composite operations are handy for efficient modeling, e.g., for the automatic execution of refactorings, and for the introduction of patterns in existing models. Some modeling environments provide an initial set of basic refactoring operations, but hardly offer any extension points for the user. Even if extension points exist, the introduction of new composite operations requires programming skills and deep knowledge of the respective metamodel.
In this paper, we introduce a method for specifying composite operations within the user´s modeling language and environment of choice. The user models the composite operation by-example, which enables the semi-automatic derivation of a generic composite operation specification. This specification may be used in various modeling scenarios, like model refactoring and model versioning. We implemented the approach in the Operation Recorder and performed an evaluation by defining multiple complex refactorings for UML diagrams
