2,071 research outputs found

    Association of the HLA locus and TNF with type I autoimmune hepatitis susceptibility in New Zealand Caucasians

    Get PDF
    PURPOSE: The precise etiology of autoimmune hepatitis (AIH) remains unknown, although a number of genetic loci have been implicated in the susceptibility of type 1 AIH. The purpose of this study was to test for association of these loci with type 1 AIH in New Zealand Caucasians. METHODS: 77 AIH patients and 485 healthy controls were genotyped for the SNPs rs2187668 (HLA-DRB*03:01), rs660895 (HLA-DRB*04:01), rs3749971 (HLA-A1-B8-DR3), rs231775 (CLTLA4), rs1800629 (TNF), and rs1800682 (FAS) using predesigned TaqMan SNP genotyping assays. Chi square analysis was used to test for association of allele and genotype with overall AIH, and with severe fibrosis and ALT levels at 6 months. RESULTS: Significant risk of AIH was conferred by the minor alleles of rs2187668 (OR = 2.45, 95% CI 1.65-3.61, p < 0.0001), rs3749971 (OR = 1.89, 95% CI 1.21-2.94, p = 0.004) and rs1800629 (OR = 2.06, 95% CI 1.41-3.01, p = 0.0001). Multivariate analysis showed that rs2187668 was independently associated with type 1 AIH susceptibility (OR = 2.40, 95% CI 1.46-3.93, p = 0.001). The C allele of FAS SNP rs1800682 was associated with increased risk of severe fibrosis at diagnosis (OR = 2.03, 95% CI 1.05-3.93, p = 0.035) and with incomplete normalization of ALT levels at 6 months post-diagnosis (OR = 3.94, 95% CI 1.62-9.54, p = 0.0015). CONCLUSIONS: This is the first population-based study to investigate genetic risk loci for type 1 AIH in New Zealand Caucasians. We report significant independent association of HLA-DRB1*03:01 with overall susceptibility to type 1 AIH, as well as FAS with a more aggressive disease phenotype

    A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans

    Get PDF
    Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms

    Characterization of the Companion to μ\mu Her

    Full text link
    μ\mu Her is a nearby quadruple system with a G-subgiant primary and several low mass companions arranged in a 2+2 architecture. While the BC components have been well characterized, the Ab component has been detected astrometrically and with direct imaging but there has been some confusion over its nature, in particular whether the companion is stellar or substellar. Using near-infrared spectroscopy we are able to estimate the spectral type of the companion as a M4±\pm1V star. In addition, we have measured the astrometry of the system for over a decade. We combined the astrometry with archival radial velocity measurements to compute an orbit of the system. From the combined orbit, we are able to compute the mass sum of the system. Using the estimated mass of the primary, we estimate the mass of the secondary as 0.32 M_sun, which agrees with the estimated spectral type. Our computed orbit is preliminary due to the incomplete orbital phase coverage, but it should be sufficient to predict ephemerides over the next decade.Comment: 7 pages, 5 figures, Accepted to Astronomical Journa

    Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes

    Get PDF
    Direct detection, also known as direct imaging, is a method for discovering and characterizing the atmospheres of planets at intermediate and wide separations. It is the only means of obtaining spectra of non-transiting exoplanets. Characterizing the atmospheres of planets in the <5 AU regime, where RV surveys have revealed an abundance of other worlds, requires a 30-m-class aperture in combination with an advanced adaptive optics system, coronagraph, and suite of spectrometers and imagers - this concept underlies planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the GMT (GMagAO-X). These instruments could provide astrometry, photometry, and spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas giants. For the first time habitable zone exoplanets will become accessible to direct imaging, and these instruments have the potential to detect and characterize the innermost regions of nearby M-dwarf planetary systems in reflected light. High-resolution spectroscopy will not only illuminate the physics and chemistry of exo-atmospheres, but may also probe rocky, temperate worlds for signs of life in the form of atmospheric biomarkers (combinations of water, oxygen and other molecular species). By completing the census of non-transiting worlds at a range of separations from their host stars, these instruments will provide the final pieces to the puzzle of planetary demographics. This whitepaper explores the science goals of direct imaging on 30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of the NA

    Direct Spectrum of the Benchmark T Dwarf HD 19467 B

    Get PDF
    HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature T_eff=978^(+20)_(-43) K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits
    corecore