86 research outputs found
Disruption of termite gut-microbiota and its prolonged fitness consequences
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 77 (2011): 4303-4312, doi:10.1128/AEM.01886-10.The disruption of host-symbiont interactions through the use of antibiotics
can help elucidate microbial functions that go beyond short-term nutritional
value. Termite gut symbionts have been studied extensively, but little is
known about their impact on the termite’s reproductive output. Here we
describe the effect that the antibiotic rifampin has not only on the gut
microbial diversity, but also on the longevity, fecundity, and weight of two
termite species - Zootermopsis angusticollis and Reticulitermes flavipes.
We report three key findings: (i) the antibiotic rifampin, when fed to
primary reproductives during the incipient stages of colony foundation,
causes a permanent reduction in the diversity of gut bacteria, and a
transitory effect on the density of the protozoan community, (ii) rifampin
treatment reduces oviposition rates of queens, translating into delayed
colony growth and ultimately reduced colony fitness and (iii) the initial
dosages of rifampin on reproduction and colony fitness had severe longterm fitness effects on Z. angusticollis survivorship and colony size. Taken
together, our findings demonstrate that the antibiotic-induced perturbation
of the microbial community associates with prolonged reductions in
longevity and fecundity. A causal relationship between these changes in the
gut microbial population structures and fitness is suggested by the
acquisition of opportunistic pathogens and incompetence of the termites to
restore a pre-treatment, native microbiota. Our results indicate that
antibiotic treatment significantly alters the termite’s microbiota,
reproduction, colony establishment and ultimately, colony growth and
development. We discuss the implications for antimicrobials as a new
application to the control of termite pest species.This research was funded by the Louis Stokes Minority Program which
supported Jessica Dumas, NSF CAREER award DEB 0447316 to
Rosengaus RB, and NSF IOS-0852344 and NAI NNA04CC04A to
Bordenstein SR
Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour
Abstract Background Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Results Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. Conclusions We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens
Who goes there? Social surveillance as a response to intergroup conflict in a primitive termite
This is the final version. Available on open access from the Royal Society via the DOI in this recordIntergroup conflict has been suggested as a major force shaping the evolution of social
behaviour in animal groups. A long-standing hypothesis is that groups at risk of attack
by rivals should become more socially cohesive, to increase resilience or protect
against future attack. However, it is usually unclear how cohesive behaviours (such as
grooming or social contacts) function in intergroup conflict. We performed an
experiment in which we exposed young colonies of the dampwood termite,
Zootermopsis angusticollis, to a rival colony while preventing physical combat with a
permeable barrier. We measured social contacts, allogrooming, and trophallaxis
before, during, and after exposure. Termites showed elevated rates of social contacts
during exposure to a rival compared to the pre-exposure phase, but rates returned to
pre-exposure levels after colonies were separated for nine days. There was evidence
of a delayed effect of conflict on worker trophallaxis. We suggest that social contacts
during intergroup conflict function as a form of social surveillance, to check individual
identity and assess colony resource holding potential. Intergroup conflict may increase
social cohesion in both the short and the long term, improving the effectiveness of
groups in competition.Natural Environment Research Council (NERC
When Subterranean Termites Challenge the Rules of Fungal Epizootics
Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle
Evidence-based recommendations on storing and handling specimens for analyses of insect microbiota
Do Termites Avoid Carcasses? Behavioral Responses Depend on the Nature of the Carcasses
BACKGROUND: Undertaking behavior is a significant adaptation to social life in enclosed nests. Workers are known to remove dead colony members from the nest. Such behavior prevents the spread of pathogens that may be detrimental to a colony. To date, little is known about the ethological aspects of how termites deal with carcasses. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we tested the responses to carcasses of four species from different subterranean termite taxa: Coptotermes formosanus Shiraki and Reticulitermes speratus (Kolbe) (lower termites) and Microcerotermes crassus Snyder and Globitermes sulphureus Haviland (higher termites). We also used different types of carcasses (freshly killed, 1-, 3-, and 7-day-old, and oven-killed carcasses) and mutilated nestmates to investigate whether the termites exhibited any behavioral responses that were specific to carcasses in certain conditions. Some behavioral responses were performed specifically on certain types of carcasses or mutilated termites. C. formosanus and R. speratus exhibited the following behaviors: (1) the frequency and time spent in antennating, grooming, and carcass removal of freshly killed, 1-day-old, and oven-killed carcasses were high, but these behaviors decreased as the carcasses aged; (2) the termites repeatedly crawled under the aging carcass piles; and (3) only newly dead termites were consumed as a food source. In contrast, M. crassus and G. sulphureus workers performed relatively few behavioral acts. Our results cast a new light on the previous notion that termites are necrophobic in nature. CONCLUSION: We conclude that the behavioral response towards carcasses depends largely on the nature of the carcasses and termite species, and the response is more complex than was previously thought. Such behavioral responses likely are associated with the threat posed to the colony by the carcasses and the feeding habits and nesting ecology of a given species
Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies
Social contact with fungus-exposed ants leads to pathogen transfer to healthy nest-mates, causing low-level infections. These micro-infections promote pathogen-specific immune gene expression and protective immunization of nest-mates
Antifungal activity of a termite queen pheromone against egg-mimicking termite ball fungi
Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers
International audienceBACKGROUND:Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease.RESULTS:Here, we demonstrate that activation of the immune system in honey bees (using bacterial lipopolysaccharides as a non-replicative pathogen) alters the social responses of healthy nestmates toward the treated individuals. Furthermore, treated individuals expressed significant differences in overall cuticular hydrocarbon profiles compared with controls. Finally, coating healthy individuals with extracts containing cuticular hydrocarbons of immunostimulated individuals significantly increased the agonistic responses of nestmates.CONCLUSION:Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony
The expression and impact of antifungal grooming in ants.
Parasites can cause extensive damage to animal societies in which many related individuals frequently interact. In response, social animals have evolved diverse individual and collective defences. Here, we measured the expression and efficiency of self-grooming and allo-grooming when workers of the ant Formica selysi were contaminated with spores of the fungal entomopathogen Metarhizium anisopliae. The amount of self-grooming increased in the presence of fungal spores, which shows that the ants are able to detect the risk of infection. In contrast, the amount of allo-grooming did not depend on fungal contamination. Workers groomed all nestmate workers that were re-introduced into their groups. The amount of allo-grooming towards noncontaminated individuals was higher when the group had been previously exposed to the pathogen. Allo-grooming decreased the number of fungal spores on the surface of contaminated workers, but did not prevent infection in the conditions tested (high dose of spores and late allo-grooming). The rate of disease transmission to groomers and other nestmates was extremely low. The systematic allo-grooming of all individuals returning to the colony, be they contaminated or not, is probably a simple but robust prophylactic defence preventing the spread of fungal diseases in insect societies
- …
