709 research outputs found
Flux-tube geometry and solar wind speed during an activity cycle
The solar wind speed at 1 AU shows variations in latitude and in time which
reflect the evolution of the global background magnetic field during the
activity cycle. It is commonly accepted that the terminal wind speed in a
magnetic flux-tube is anti-correlated with its expansion ratio, which motivated
the definition of widely-used semi-empirical scaling laws relating one to the
other. In practice, such scaling laws require ad-hoc corrections. A predictive
law based solely on physical principles is still missing. We test whether the
flux-tube expansion is the controlling factor of the wind speed at all phases
of the cycle and at all latitudes using a very large sample of wind-carrying
open magnetic flux-tubes. We furthermore search for additional physical
parameters based on the geometry of the coronal magnetic field which have an
influence on the terminal wind flow speed. We use MHD simulations of the corona
and wind coupled to a dynamo model to provide a large statistical ensemble of
open flux-tubes which we analyse conjointly in order to identify relations of
dependence between the wind speed and geometrical parameters of the flux-tubes
which are valid globally (for all latitudes and moments of the cycle). Our
study confirms that the terminal speed of the solar wind depends very strongly
on the geometry of the open magnetic flux-tubes through which it flows. The
total flux-tube expansion is more clearly anti-correlated with the wind speed
for fast rather than for slow wind flows, and effectively controls the
locations of these flows during solar minima. Overall, the actual asymptotic
wind speeds attained are also strongly dependent on field-line inclination and
magnetic field amplitude at the foot-points. We suggest ways of including these
parameters on future predictive scaling-laws for the solar wind speed.Comment: Accepted for publicaton on Astronomy & Astrophysic
Tracking Streamer Blobs Into the Heliosphere
In this paper, we use coronal and heliospheric images from the STEREO
spacecraft to track streamer blobs into the heliosphere and to observe them
being swept up and compressed by the fast wind from low-latitude coronal holes.
From an analysis of their elongation/time tracks, we discover a 'locus of
enhanced visibility' where neighboring blobs pass each other along the line of
sight and their corotating spiral is seen edge on. The detailed shape of this
locus accounts for a variety of east-west asymmetries and allows us to
recognize the spiral of blobs by its signatures in the STEREO images: In the
eastern view from STEREO-A, the leading edge of the spiral is visible as a
moving wavefront where foreground ejections overtake background ejections
against the sky and then fade. In the western view from STEREO-B, the leading
edge is only visible close to the Sun-spacecraft line where the radial path of
ejections nearly coincides with the line of sight. In this case, we can track
large-scale waves continuously back to the lower corona and see that they
originate as face-on blobs.Comment: 15 pages plus 11 figures; figure 6 shows the 'locus of enhanced
visibility', which we call 'the bean'. (accepted by ApJ 4/02/2010
A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO
By exploiting data from the STEREO/heliospheric imagers (HI) we extend a well-established technique developed for coronal analysis by producing time-elongation plots that reveal the nature of solar transient activity over a far more extensive region of the heliosphere than previously possible from coronagraph images. Despite the simplicity of these plots, their power in demonstrating how the plethora of ascending coronal features observed near the Sun evolve as they move antisunward is obvious. The time-elongation profile of a transient tracked by HI can, moreover, be used to establish its angle out of the plane-of-the-sky; an illustration of such analysis reveals coronal mass ejection material that can be clearly observed propagating out to distances beyond 1AU. This work confirms the value of the time-elongation format in identifying/characterising transient activity in the inner heliosphere, whilst also validating the ability of HI to continuously monitor solar ejecta out to and beyond 1A
Simultaneous interplanetary scintillation and Heliospheric Imager observations of a coronal mass ejection
We describe simultaneous Interplanetary Scintillation (IPS) and STEREO Heliospheric Imager (HI) observations of a coronal mass ejection (CME) on 16 May 2007. Strong CME signatures were present throughout the IPS observation. The IPS raypath lay within the field-of-view of HI-1 on STEREO-A and comparison of the observations shows that the IPS measurements came from a region within a faint CME front observed by HI-1A. This front may represent the merging of two converging CMEs. Plane-of-sky velocity estimates based on time-height plots of the two converging CME structures were 325 kms?1 and 550 kms?1 for the leading and trailing fronts respectively. The plane-of-sky velocities determined from IPS ranged from 420 ± 10 kms?1 to 520 ± 20 kms?1. IPS results reveal the presence of micro-structure within the CME front which may represent interaction between the two separate CME events. This is the first time that it has been possible to interpret IPS observations of small-scale structure within an interplanetary CME in terms of the global structure of the event
Recommended from our members
Intermittent release of transients in the slow solar wind: 2. In situ evidence
In paper 1, we showed that the Heliospheric Imager (HI) instruments on the pair of NASA STEREO spacecraft can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates near helmet streamers. The observation of intense intermittent transient outflow by HI implies that the corresponding in situ observations of the slow solar wind and corotating interaction regions (CIRs) should contain many signatures of transients. In the present paper, we compare the HI observations with in situ measurements from the STEREO and ACE spacecraft. Analysis of the solar wind ion, magnetic field, and suprathermal electron flux measurements from
the STEREO spacecraft reveals the presence of both closed and partially disconnected interplanetary magnetic field lines permeating the slow solar wind. We predict that one of the transients embedded within the second CIR (CIR‐D in paper 1) should impact the near‐Earth ACE spacecraft. ACE measurements confirm the presence of a transient at the time of CIR passage; the transient signature includes helical magnetic fields and bidirectional suprathermal electrons. On the same day, a strahl electron dropout is observed at STEREO‐B, correlated with the passage of a high plasma beta structure. Unlike ACE, STEREO‐B observes the transient a few hours ahead of the CIR. STEREO‐A, STEREO‐B, and ACE spacecraft observe very different slow solar wind properties ahead of and during the CIR analyzed in this paper, which we associate with the intermittent release of transients
A Coronal Hole's Effects on CME Shock Morphology in the Inner Heliosphere
We use STEREO imagery to study the morphology of a shock driven by a fast
coronal mass ejection (CME) launched from the Sun on 2011 March 7. The source
region of the CME is located just to the east of a coronal hole. The CME ejecta
is deflected away from the hole, in contrast with the shock, which readily
expands into the fast outflow from the coronal hole. The result is a CME with
ejecta not well centered within the shock surrounding it. The shock shape
inferred from the imaging is compared with in situ data at 1 AU, where the
shock is observed near Earth by the Wind spacecraft, and at STEREO-A. Shock
normals computed from the in situ data are consistent with the shock morphology
inferred from imaging.Comment: to appear in The Astrophysical Journa
Recommended from our members
The radial width of a coronal mass ejection between 0.1 and 0.4 AU estimated from the heliospheric imager on STEREO
On 15-17 February 2008, a CME with an approximately circular cross section was tracked through successive images obtained by the Heliospheric Imager (HI) instrument onboard the STEREO-A spacecraft. Reasoning that an idealised flux rope is cylindrical in shape with a circular cross-section, best fit circles are used to determine the radial width of the CME. As part of the process the radial velocity and longitude of propagation are determined by fits to elongation-time maps as 252±5 km/s and 70±5° respectively. With the longitude known, the radial size is calculated from the images, taking projection effects into account. The radial width of the CME, S (AU), obeys a power law with heliocentric distance, R, as the CME travels between 0.1 and 0.4 AU, such that S=0.26 R0.6±0.1. The exponent value obtained is compared to published studies based on statistical surveys of in situ spacecraft observations of ICMEs between 0.3 and 1.0 AU, and general agreement is found. This paper demonstrates the new opportunities provided by HI to track the radial width of CMEs through the previously unobservable zone between the LASCO field of view and Helios in situ measurements
The Temporal and Spatial Scales of Density Structures Released in the Slow Solar Wind During Solar Activity Maximum
In a recent study, we took advantage of a highly tilted coronal neutral sheet to show that density structures, extending radially over several solar radii (R-s), are released in the forming slow solar wind approximately 4-5 R-s above the solar surface. We related the signatures of this formation process to intermittent magnetic reconnection occurring continuously above helmet streamers. We now exploit the heliospheric imagery from the Solar Terrestrial Relation Observatory (STEREO) to map the spatial and temporal distribution of the ejected structures. We demonstrate that streamers experience quasi-periodic bursts of activity with the simultaneous outpouring of small transients over a large range of latitudes in the corona. This cyclic activity leads to the emergence of well-defined and broad structures. Derivation of the trajectories and kinematic properties of the individual small transients that make up these large-scale structures confirms their association with the forming slow solar wind (SSW). We find that these transients are released, on average, every 19.5 hr, simultaneously at all latitudes with a typical radial size of 12 R-s. Their spatial distribution, release rate, and three-dimensional extent are used to estimate the contribution of this cyclic activity to the mass flux carried outward by the SSW. Our results suggest that, in interplanetary space, the global structure of the heliospheric current sheet is dominated by a succession of blobs and associated flux ropes. We demonstrate this with an example event using STEREO-A in situ measurements.Peer reviewe
Recommended from our members
Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 4: Near-Earth solar wind speed, IMF, and open solar flux
In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF) and solar wind flow speed, as well as the open solar flux (OSF) from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2sigma� uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999)
Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona
The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north-south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory (STEREO) mission with coronagraphic observations from the SOlar and Heliospheric Observatory (SOHO) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as "raining inflows." This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.Peer reviewe
- …
