1,956 research outputs found
Comparative study of screened inter-layer interactions in the Coulomb drag effect in bilayer electron systems
Coulomb drag experiments in which the inter-layer resistivity is measured are
important as they provide information on the Coulomb interactions in bilayer
systems. When the layer densities are low correlation effects become
significant to account for the quantitative description of experimental
results. We investigate systematically various models of effective inter-layer
interactions in a bilayer system and compare our results with recent
experiments. In the low density regime, the correlation effects are included
via the intra- and inter-layer local-field corrections. We employ several
theoretical approaches to construct static local-field corrections. Our
comparative study demonstrates the importance of including the correlation
effects accurately in the calculation of drag resistivity. Recent experiments
performed at low layer densities are adequately described by effective
inter-layer interactions incorporating static correlations.Comment: Final Version. To appear in Phys. Rev.
Frictional Drag Between Coupled 2D Hole Gases in GaAs/AlGaAs Heterostructures
We report on the first measurements of the drag effect between coupled
2D-hole gases. We investigate the coupling by changing the carrier densities in
the quantum wells, the widths of the barriers between the gases and the
perpendicular magnetic field. From the data we are able to attribute the
frictional drag to phonon coupling, because the non-parabolicity allows to tune
the Fermi wavevector and the Fermi velocity separately and, thereby, to
distinguish between phonon- and plasmon-dominated coupling.Comment: 10 pages, 5 figure
Effects of restricted basilar papillar lesions and hair cell regeneration on auditory forebrain frequency organization in adult European Starlings
The frequency organization of neurons in the forebrain Field L complex (FLC) of adult starlings was investigated to determine the effects of hair cell (HC) destruction in the basal portion of the basilar papilla (BP) and of subsequent HC regeneration. Conventional microelectrode mapping techniques were used in normal starlings and in lesioned starlings either 2 d or 6-10 weeks after aminoglycoside treatment. Histological examination of the BP and recordings of auditory brainstem evoked responses confirmed massive loss of HCs in the basal portion of the BP and hearing losses at frequencies >2 kHz in starlings tested 2 d after aminoglycoside treatment. In these birds, all neurons in the region of the FLC in which characteristic frequencies (CFs) normally increase from 2 to 6 kHz had CF in the range of 2-4 kHz. The significantly elevated thresholds of responses in this region of altered tonotopic organization indicated that they were the residue of prelesion responses and did not reflect CNS plasticity. In the long-term recovery birds, there was histological evidence of substantial HC regeneration. The tonotopic organization of the high-frequency region of the FLC did not differ from that in normal starlings, but the mean threshold at CF in this frequency range was intermediate between the values in the normal and lesioned short-recovery groups. The recovery of normal tonotopicity indicates considerable stability of the topography of neuronal connections in the avian auditory system, but the residual loss of sensitivity suggests deficiencies in high-frequency HC function
Self-consistent Coulomb picture of an electron-electron bilayer system
In this work we implement the self-consistent Thomas-Fermi approach and a
local conductivity model to an electron-electron bilayer system. The presence
of an incompressible strip, originating from screening calculations at the top
(or bottom) layer is considered as a source of an external potential
fluctuation to the bottom (or top) layer. This essentially yields modifications
to both screening properties and the magneto-transport quantities. The effect
of the temperature, inter-layer distance and density mismatch on the density
and the potential fluctuations are investigated. It is observed that the
existence of the incompressible strips plays an important role simply due to
their poor screening properties on both screening and the magneto-resistance
(MR) properties. Here we also report and interpret the observed MR Hysteresis
within our model.Comment: 12 pages, 12 figures, submitted to PR
Semiclassical theory of electron drag in strong magnetic fields
We present a semiclassical theory for electron drag between two parallel
two-dimensional electron systems in a strong magnetic field, which provides a
transparent picture of the most salient qualitative features of anomalous drag
phenomena observed in recent experiments, especially the striking sign reversal
of drag at mismatched densities. The sign of the drag is determined by the
curvature of the effective dispersion relation obeyed by the drift motion of
the electrons in a smooth disorder potential. Localization plays a role in
explaining activated low temperature behavior, but is not crucial for anomalous
drag per se.Comment: 10 page
Missing 2k_F Response for Composite Fermions in Phonon Drag
The response of composite Fermions to large wavevector scattering has been
studied through phonon drag measurements. While the response retains
qualitative features of the electron system at zero magnetic field, notable
discrepancies develop as the system is varied from a half-filled Landau level
by changing density or field. These deviations, which appear to be inconsistent
with the current picture of composite Fermions, are absent if half-filling is
maintained while changing density. There remains, however, a clear deviation
from the temperature dependence anticipated for 2k_F scattering.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. Let
Coulomb drag in intermediate magnetic fields
We investigated theoretically the Coulomb drag effect in coupled 2D electron
gases in a wide interval of magnetic field and temperature , ,
being intralayer scattering time, being the cyclotron
frequency. We show that the quantization of the electron spectrum leads to rich
parametric dependences of drag transresistance on temperature and magnetic
field. This is in contrast to usual resistance. New small energy scales are
found to cut typical excitation energies to values lower than temperature. This
may lead to a linear temperature dependence of transresistance even in a
relatively weak magnetic field and can explain some recent experimental data.
We present a novel mechanism of Coulomb drag when the current in the active
layer causes a magnetoplasmon wind and the magnetoplasmons are absorbed by the
electrons of the passive layer providing a momentum transfer. We derived
general relations that describe the drag as a result of resonant tunneling of
magnetoplasmons.Comment: ZIP archive,10 pages, 3 ps figures, submitted to PR
Frictional Coulomb drag in strong magnetic fields
A treatment of frictional Coulomb drag between two 2-dimensional electron
layers in a strong perpendicular magnetic field, within the independent
electron picture, is presented. Assuming fully resolved Landau levels, the
linear response theory expression for the transresistivity is
evaluated using diagrammatic techniques. The transresistivity is given by an
integral over energy and momentum transfer weighted by the product of the
screened interlayer interaction and the phase-space for scattering events. We
demonstrate, by a numerical analysis of the transresistivity, that for
well-resolved Landau levels the interplay between these two factors leads to
characteristic features in both the magnetic field- and the temperature
dependence of . Numerical results are compared with recent
experiments.Comment: RevTeX, 34 pages, 8 figures included in tex
Sign-reversal of drag in bilayer systems with in-plane periodic potential modulation
We develop a theory for describing frictional drag in bilayer systems with
in-plane periodic potential modulations, and use it to investigate the drag
between bilayer systems in which one of the layers is modulated in one
direction. At low temperatures, as the density of carriers in the modulated
layer is changed, we show that the transresistivity component in the direction
of modulation can change its sign. We also give a physical explanation for this
behavior.Comment: 4 pages, 4 figure
- …
