2,928 research outputs found
Is the Sunyaev-Zeldovich effect responsible for the observed steepening in the spectrum of the Coma radio halo ?
The spectrum of the radio halo in the Coma cluster is measured over almost
two decades in frequency. The current radio data show a steepening of the
spectrum at higher frequencies, which has implications for models of the radio
halo origin. There is an on-going debate on the possibility that the observed
steepening is not intrinsic to the emitted radiation, but is instead caused by
the SZ effect. Recently, the Planck satellite measured the SZ signal and its
spatial distribution in the Coma cluster allowing to test this hypothesis.
Using the Planck results, we calculated the modification of the radio halo
spectrum by the SZ effect in three different ways. With the first two methods
we measured the SZ-decrement within the aperture radii used for flux
measurements of the halo at the different frequencies. First we adopted the
global compilation of data from Thierbach et al. and a reference aperture
radius consistent with those used by the various authors. Second we used the
available brightness profiles of the halo at different frequencies to derive
the spectrum within two fixed apertures, and derived the SZ-decrement using
these apertures. As a third method we used the quasi-linear correlation between
the y and the radio-halo brightness at 330 MHz discovered by Planck to derive
the modification of the radio spectrum by the SZ-decrement in a way that is
almost independent of the adopted aperture radius. We found that the spectral
modification induced by the SZ-decrement is 4-5 times smaller than that
necessary to explain the observed steepening. Consequently a break or cut-off
in the spectrum of the emitting electrons is necessary to explain current data.
We also show that, if a steepening is absent from the emitted spectrum, future
deep observations at 5 GHz with single dishes are expected to measure a halo
flux in a 40 arcmin radius that would be 7-8 times higher than currently seen.Comment: 8 pages, 6 figures, accepted in Astronomy and Astrophysics (date of
acceptance 19/08/2013
Extragalactic Radio Sources and the WMAP Cold Spot
We detect a dip of 20-45% in the surface brightness and number counts of NVSS
sources smoothed to a few degrees at the location of the WMAP cold spot. The
dip has structure on scales of approximately 1-10 degrees. Together with
independent all-sky wavelet analyses, our results suggest that the dip in
extragalactic brightness and number counts and the WMAP cold spot are
physically related, i.e., that the coincidence is neither a statistical anomaly
nor a WMAP foreground correction problem. If the cold spot does originate from
structures at modest redshifts, as we suggest, then there is no remaining need
for non-Gaussian processes at the last scattering surface of the CMB to explain
the cold spot. The late integrated Sachs-Wolfe effect, already seen
statistically for NVSS source counts, can now be seen to operate on a single
region. To create the magnitude and angular size of the WMAP cold spot requires
a ~140 Mpc radius completely empty void at z<=1 along this line of sight. This
is far outside the current expectations of the concordance cosmology, and adds
to the anomalies seen in the CMB.Comment: revised version, ApJ, in pres
Solving the Cooling Flow Problem of Galaxy Clusters by Dark Matter Neutralino Annihilation
Recent X-ray observations revealed that strong cooling flow of intracluster
gas is not present in galaxy clusters, even though predicted theoretically if
there is no additional heating source. I show that relativistic particles
produced by dark matter neutralino annihilation in cluster cores provide a
sufficient heating source to suppress the cooling flow, under reasonable
astrophysical circumstances including adiabatic growth of central density
profile, with appropriate particle physics parameters for dark matter
neutralinos. In contrast to other astrophysical heat sources such as AGNs, this
process is a steady and stable feedback over cosmological time scales after
turned on.Comment: 4 pages, no figure. Accepted to Phys. Rev. Lett. A few minor
revisions and references adde
Metamorphic fluids and uplift-erosion history of a portion of the Kapuskasing structural zone, Ontario, as deduced from fluid inclusions
Fluid inclusions can be used to determine the compositional evolution of fluids present in high grade metamorphic rocks (Touret, 1979) along with the general P-T path followed by the rocks during uplift and erosion (Hollister et al., 1979). In this context, samples of high grade gneisses from the Kapuskasing structural zone (KSZ, Fig. 1) of eastern Ontario were studied in an attempt to define the composition of syn- and post-metamorphic fluids and help constrain the uplift and erosion history of the KSZ. Recent work by Percival (1980), Percival and Card (1983) and Percival and Krogh (1983) shows that the KSZ represents lower crustal granulites that form the lower portion of an oblique cross section through the Archean crust, which was up faulted along a northeast striking thrust fault. The present fluid inclusion study places constraints upon the P-T path which the KSZ followed during uplift and erosion
The effective potential, critical point scaling and the renormalization group
The desirability of evaluating the effective potential in field theories near
a phase transition has been recognized in a number of different areas. We show
that recent Monte Carlo simulations for the probability distribution for the
order parameter in an equilibrium Ising system, when combined with low-order
renormalization group results for an ordinary system, can be used to
extract the effective potential. All scaling features are included in the
process.Comment: REVTEX file, 22 pages, three figures, submitted to Phys. Rev.
Anderson transition of the plasma oscillations of 1D disordered Wigner lattices
We report the existence of a localization-delocalization transition in the
classical plasma modes of a one dimensional Wigner Crystal with a white noise
potential environment at T=0. Finite size scaling analysis reveals a divergence
of the localization length at a critical eigenfrequency. Further scaling
analysis indicates power law behavior of the critical frequency in terms of the
relative interaction strength of the charges. A heuristic argument for this
scaling behavior is consistent with the numerical results. Additionally, we
explore a particular realization of random-bond disorder in a one dimensional
Wigner lattice in which all of the collective modes are observed to be
localized.Comment: 4 pages, 3 figures, Typo for the localization length corrected.
Should read 1 / \n
Effects of f(R) Model on the Dynamical Instability of Expansionfree Gravitational Collapse
Dark energy models based on f(R) theory have been extensively studied in
literature to realize the late time acceleration. In this paper, we have chosen
a viable f(R) model and discussed its effects on the dynamical instability of
expansionfree fluid evolution generating a central vacuum cavity. For this
purpose, contracted Bianchi identities are obtained for both the usual matter
as well as dark source. The term dark source is named to the higher order
curvature corrections arising from f(R) gravity. The perturbation scheme is
applied and different terms belonging to Newtonian and post Newtonian regimes
are identified. It is found that instability range of expansionfree fluid on
external boundary as well as on internal vacuum cavity is independent of
adiabatic index but depends upon the density profile, pressure
anisotropy and f(R) model.Comment: 26 pages, no figure. arXiv admin note: text overlap with
arXiv:1108.266
Chandra Detection of the Forward and Reverse Shocks in Cassiopeia-A
We report the localization of the forward and reversed shock fronts in the
young supernova remnant Cas-A using X-ray data obtained with the Chandra
Observatory. High resolution X-ray maps resolve a previously unseen X-ray
feature encompassing the extremity of the remnant. This feature consists of
thin, tangential wisps of emission bordering the outer edge of the thermal
X-ray and radio remnant, forming a circular rim, approx. 2.7 in radius. Radio
images show a sharp rise in brightness at this X-ray rim, along with a large
jump in the synchrotron polarization angle. These characteristics suggest that
these wisps are the previously unresolved signature of the forward, or outer,
shock. Similarly, we identify the sharp rise in emissivity of the bright shell
for both the radio and X-ray line emission associated with the reverse shock.
The derived ratio of the averaged forward and reverse shock radii of approx.
3:2 constrains the remnant to have swept up roughly the same amount of mass as
was ejected; this suggests that Cas-A is just entering the Sedov phase.
Comparison of the X-ray spectra from the two shock regions shows that the
equivalent widths of prominent emission lines are significantly lower exterior
to the bright shell, as expected if they are respectively identified with the
shocked circumstellar material and shocked ejecta. Furthermore, the spectrum of
the outer rim itself is dominated by power-law emission, likely the counterpart
of the non-thermal component previously seen at energies above 10 keV.Comment: 7 pages with 5 figures, LaTex, emulateapj.sty. To appear in the
Astrophysical Journal Letter
- …
