1,344,988 research outputs found
Clustering in Hilbert space of a quantum optimization problem
The solution space of many classical optimization problems breaks up into
clusters which are extensively distant from one another in the Hamming metric.
Here, we show that an analogous quantum clustering phenomenon takes place in
the ground state subspace of a certain quantum optimization problem. This
involves extending the notion of clustering to Hilbert space, where the
classical Hamming distance is not immediately useful. Quantum clusters
correspond to macroscopically distinct subspaces of the full quantum ground
state space which grow with the system size. We explicitly demonstrate that
such clusters arise in the solution space of random quantum satisfiability
(3-QSAT) at its satisfiability transition. We estimate both the number of these
clusters and their internal entropy. The former are given by the number of
hardcore dimer coverings of the core of the interaction graph, while the latter
is related to the underconstrained degrees of freedom not touched by the
dimers. We additionally provide new numerical evidence suggesting that the
3-QSAT satisfiability transition may coincide with the product satisfiability
transition, which would imply the absence of an intermediate entangled
satisfiable phase.Comment: 11 pages, 6 figure
Polytropic equation of state and primordial quantum fluctuations
We study the primordial Universe in a cosmological model where inflation is
driven by a fluid with a polytropic equation of state . We calculate the dynamics of the scalar factor and build a
Universe with constant density at the origin. We also find the equivalent
scalar field that could create such equation of state and calculate the
corresponding slow-roll parameters. We calculate the scalar perturbations, the
scalar power spectrum and the spectral index.Comment: 16 pages, 4 figure
Point Charge Self-Energy in the General Relativity
Singularities in the metric of the classical solutions to the Einstein
equations (Schwarzschild, Kerr, Reissner -- Nordstr\"om and Kerr -- Newman
solutions) lead to appearance of generalized functions in the Einstein tensor
that are not usually taken into consideration. The generalized functions can be
of a more complex nature than the Dirac \d-function. To study them, a
technique has been used based on a limiting solution sequence. The solutions
are shown to satisfy the Einstein equations everywhere, if the energy-momentum
tensor has a relevant singular addition of non-electromagnetic origin. When the
addition is included, the total energy proves finite and equal to , while
for the Kerr and Kerr--Newman solutions the angular momentum is .
As the Reissner--Nordstr\"om and Kerr--Newman solutions correspond to the point
charge in the classical electrodynamics, the result obtained allows us to view
the point charge self-energy divergence problem in a new fashion.Comment: VI Fridmann Seminar, France, Corsica, Corgeze, 2004, LaTeX, 6 pages,
2 fige
Gravity-driven draining of a thin rivulet with constant width down a slowly varying substrate
The locally unidirectional gravity-driven draining of a thin rivulet with constant width but slowly varying contact angle down a slowly varying substrate is considered. Specifically, the flow of a rivulet in the azimuthal direction from the top to the bottom of a large horizontal cylinder is investigated. In particular, it is shown that, despite behaving the same locally, this flow has qualitatively different global behaviour from that of a rivulet with constant contact angle but slowly varying width. For example, whereas in the case of constant contact angle there is always a rivulet that runs all the way from the top to the bottom of the cylinder, in the case of constant width this is possible only for sufficiently narrow rivulets. Wider rivulets with constant width are possible only between the top of the cylinder and a critical azimuthal angle on the lower half of the cylinder. Assuming that the contact lines de-pin at this critical angle (where the contact angle is zero) the rivulet runs from the critical angle to the bottom of the cylinder with zero contact angle, monotonically decreasing width and monotonically increasing maximum thickness. The total mass of fluid on the cylinder is found to be a monotonically increasing function of the value of the constant width
A head-up display format for transport aircraft approach and landing
An electronic flight-guidance display format was designed for use in evaluations of the collimated head-up display concept applied to transport aircraft landing. In the design process of iterative evaluation and modification, some general principles, or guidelines, applicable to electronic flight displays were suggested. The usefulness of an indication of instantaneous inertial flightpath was clearly demonstrated. Evaluator pilot acceptance of the unfamiliar display concepts was very positive when careful attention was given to indoctrination and training
Sputtered gold mask for deep chemical etching of silicon
Sputtered mask resists chemical attack from acid and has adherence to withstand prolonged submergence in etch solution without lifting from silicon surface. Even under prolonged etch conditions with significant undercutting, gold mask maintained excellent adhesion to silicon surface and imperviousness to acid
- …
