1,344,988 research outputs found

    Clustering in Hilbert space of a quantum optimization problem

    Full text link
    The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state subspace of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum clusters correspond to macroscopically distinct subspaces of the full quantum ground state space which grow with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their internal entropy. The former are given by the number of hardcore dimer coverings of the core of the interaction graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We additionally provide new numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.Comment: 11 pages, 6 figure

    Polytropic equation of state and primordial quantum fluctuations

    Get PDF
    We study the primordial Universe in a cosmological model where inflation is driven by a fluid with a polytropic equation of state p=αρ+kρ1+1/np = \alpha\rho + k\rho^{1 + 1/n}. We calculate the dynamics of the scalar factor and build a Universe with constant density at the origin. We also find the equivalent scalar field that could create such equation of state and calculate the corresponding slow-roll parameters. We calculate the scalar perturbations, the scalar power spectrum and the spectral index.Comment: 16 pages, 4 figure

    Point Charge Self-Energy in the General Relativity

    Full text link
    Singularities in the metric of the classical solutions to the Einstein equations (Schwarzschild, Kerr, Reissner -- Nordstr\"om and Kerr -- Newman solutions) lead to appearance of generalized functions in the Einstein tensor that are not usually taken into consideration. The generalized functions can be of a more complex nature than the Dirac \d-function. To study them, a technique has been used based on a limiting solution sequence. The solutions are shown to satisfy the Einstein equations everywhere, if the energy-momentum tensor has a relevant singular addition of non-electromagnetic origin. When the addition is included, the total energy proves finite and equal to mc2mc^2, while for the Kerr and Kerr--Newman solutions the angular momentum is mcamc {\bf a}. As the Reissner--Nordstr\"om and Kerr--Newman solutions correspond to the point charge in the classical electrodynamics, the result obtained allows us to view the point charge self-energy divergence problem in a new fashion.Comment: VI Fridmann Seminar, France, Corsica, Corgeze, 2004, LaTeX, 6 pages, 2 fige

    Gravity-driven draining of a thin rivulet with constant width down a slowly varying substrate

    Get PDF
    The locally unidirectional gravity-driven draining of a thin rivulet with constant width but slowly varying contact angle down a slowly varying substrate is considered. Specifically, the flow of a rivulet in the azimuthal direction from the top to the bottom of a large horizontal cylinder is investigated. In particular, it is shown that, despite behaving the same locally, this flow has qualitatively different global behaviour from that of a rivulet with constant contact angle but slowly varying width. For example, whereas in the case of constant contact angle there is always a rivulet that runs all the way from the top to the bottom of the cylinder, in the case of constant width this is possible only for sufficiently narrow rivulets. Wider rivulets with constant width are possible only between the top of the cylinder and a critical azimuthal angle on the lower half of the cylinder. Assuming that the contact lines de-pin at this critical angle (where the contact angle is zero) the rivulet runs from the critical angle to the bottom of the cylinder with zero contact angle, monotonically decreasing width and monotonically increasing maximum thickness. The total mass of fluid on the cylinder is found to be a monotonically increasing function of the value of the constant width

    A head-up display format for transport aircraft approach and landing

    Get PDF
    An electronic flight-guidance display format was designed for use in evaluations of the collimated head-up display concept applied to transport aircraft landing. In the design process of iterative evaluation and modification, some general principles, or guidelines, applicable to electronic flight displays were suggested. The usefulness of an indication of instantaneous inertial flightpath was clearly demonstrated. Evaluator pilot acceptance of the unfamiliar display concepts was very positive when careful attention was given to indoctrination and training

    Sputtered gold mask for deep chemical etching of silicon

    Get PDF
    Sputtered mask resists chemical attack from acid and has adherence to withstand prolonged submergence in etch solution without lifting from silicon surface. Even under prolonged etch conditions with significant undercutting, gold mask maintained excellent adhesion to silicon surface and imperviousness to acid
    corecore