417 research outputs found
Design Considerations for a Dedicated Gravity Recovery Satellite Mission Consisting of Two Pairs of Satellites
Future satellite missions dedicated to measuring time-variable gravity will need to address the concern of temporal aliasing errors; i.e., errors due to high-frequency mass variations. These errors have been shown to be a limiting error source for future missions with improved sensors. One method of reducing them is to fly multiple satellite pairs, thus increasing the sampling frequency of the mission. While one could imagine a system architecture consisting of dozens of satellite pairs, this paper explores the more economically feasible option of optimizing the orbits of two pairs of satellites. While the search space for this problem is infinite by nature, steps have been made to reduce it via proper assumptions regarding some parameters and a large number of numerical simulations exploring appropriate ranges for other parameters. A search space originally consisting of 15 variables is reduced to two variables with the utmost impact on mission performance: the repeat period of both pairs of satellites (shown to be near-optimal when they are equal to each other), as well as the inclination of one of the satellite pairs (the other pair is assumed to be in a polar orbit). To arrive at this conclusion, we assume circular orbits, repeat groundtracks for both pairs of satellites, a 100-km inter-satellite separation distance, and a minimum allowable operational satellite altitude of 290 km based on a projected 10-year mission lifetime. Given the scientific objectives of determining time-variable hydrology, ice mass variations, and ocean bottom pressure signals with higher spatial resolution, we find that an optimal architecture consists of a polar pair of satellites coupled with a pair inclined at 72deg, both in 13-day repeating orbits. This architecture provides a 67% reduction in error over one pair of satellites, in addition to reducing the longitudinal striping to such a level that minimal post-processing is required, permitting a substantial increase in the spatial resolution of the gravity field products. It should be emphasized that given different sets of scientific objectives for the mission, or a different minimum allowable satellite altitude, different architectures might be selected
Simulation Study of a Follow-on Gravity Mission to GRACE
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing
A 40th deg and order gravitational field model for Mars
Understanding the origin and evolution of major photographic features on Mars, such as the hemispheric dichotomy and Tharsis rise, will require improved resolution of that planet's gravitational and topographic fields. The highest resolution gravity model for Mars published to date was derived from Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft, and is of 18th degree and order. That field has a maximum spatial resolution of approx. 600 km, which is comparable to that of the best topographic model. The resolution of previous gravity models was limited not by data density, but rather by the computational resources available at the time. Because this restriction is no longer a limitation, the Viking and Mariner data sets were reanalyzed and a gravitational field was derived complete to the 40th degree and order with a corresponding maximum spatial resolution of 300 km where the data permit
Optimizing the Earth-LISA "rendez-vous"
We present a general survey of heliocentric LISA orbits, hoping it might help
in the exercise of rescoping the mission. We try to semi-analytically optimize
the orbital parameters in order to minimize the disturbances coming from the
Earth-LISA interaction. In a set of numerical simulations we include
nonautonomous perturbations and provide an estimate of Doppler shift and
breathing as a function of the trailing angle.Comment: 18 pages, 16 figures. Submitted on CQ
Spectroscopic Measurements in the Shock Relaxation Region of a Hypervelocity Mach Reflection
We examine the spatial temperature profile in the non-equilibrium relaxation region
behind a stationary shock wave. The normal shock wave is established through a Mach
reflection configuration from an opposing wedge arrangement for a hypervelocity air Mach
7.42 freestream. Schlieren images confirm that the shock configuration is steady and the
location is repeatable. Emission spectroscopy is used to identify dissociated species and to
obtain vibrational temperature measurements using the NO and OH A-X band sequences.
Temperature measurements are presented at selected locations behind the normal shock.
LIFBASE is used as the simulation spectrum software for OH temperature-fitting, however the need to access higher vibrational and rotational levels for NO leads to the use of
an in-house developed algorithm. For NO, results demonstrate the contribution of higher
vibrational and rotational levels to the spectra at the conditions of this study. Very good
agreement is achieved between the experimentally measured NO vibrational temperatures
and calculations performed using a state-resolved, one-dimensional forced harmonic oscillator thermochemical model
Recommended from our members
Is the Detection of Accelerated Sea Level Rise Imminent?
Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time. In stark contrast to this expectation however, current altimeter products show the rate of sea level rise to have decreased from the first to second decades of the altimeter era. Here, a combined analysis of altimeter data and specially designed climate model simulations shows the 1991 eruption of Mt Pinatubo to likely have masked the acceleration that would have otherwise occurred. This masking arose largely from a recovery in ocean heat content through the mid to late 1990 s subsequent to major heat content reductions in the years following the eruption. A consequence of this finding is that barring another major volcanic eruption, a detectable acceleration is likely to emerge from the noise of internal climate variability in the coming decade
Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues
State of the art research and treatment of biological tissues require
accurate and efficient methods for describing their mechanical properties.
Indeed, micromechanics motivated approaches provide a systematic method for
elevating relevant data from the microscopic level to the macroscopic one. In
this work the mechanical responses of hyperelastic tissues with one and two
families of collagen fibers are analyzed by application of a new variational
estimate accounting for their histology and the behaviors of their
constituents. The resulting, close form expressions, are used to determine the
overall response of the wall of a healthy human coronary artery. To demonstrate
the accuracy of the proposed method these predictions are compared with
corresponding 3-D finite element simulations of a periodic unit cell of the
tissue with two families of fibers. Throughout, the analytical predictions for
the highly nonlinear and anisotropic tissue are in agreement with the numerical
simulations
An Inversion of Gravity and Topography for Mantle and Crustal Structure on Mars
Analysis of the gravity and topography of Mars presently provides our primary quantitative constraints on the internal structure of Mars. We present an inversion of the long-wavelength (harmonic degree less than or equal to 10) gravity and topography of Mars for lateral variations of mantle temperature and crustal thickness. Our formulation incorporates both viscous mantle flow (which most prior studies have neglected) and isostatically compensated density anomalies in the crust and lithosphere. Our nominal model has a 150-km-thick high-viscosity surface layer over an isoviscous mantle, with a core radius of 1840 km. It predicts lateral temperature variations of up to a few hundred degrees Kelvin relative to the mean mantle temperature, with high temperature under Tharsis and to a lesser extent under Elysium and cool temperatures elsewhere. Surprisingly, the model predicts crustal thinning beneath Tharsis. If correct, this implies that thinning of the crust by mantle shear stresses dominates over thickening of the crust by volcanism. The major impact basins (Hellas, Argyre, Isidis, Chryse, and Utopia) are regions of crustal thinning, as expected. Utopia is also predicted to be a region of hot mantle, which is hard to reconcile with the surface geology. An alternative model for Utopia treats it as a mascon basin. The Utopia gravity anomaly is consistent with the presence of a 1.2 to 1.6 km thick layer of uncompensated basalt, in good agreement with geologic arguments about the amount of volcanic fill in this area. The mantle thermal structure is the dominant contributor to the observed geoid in our inversion. The mantle also dominates the topography at the longest wavelengths, but shorter wavelengths (harmonic degrees greater than or equal to 4) are dominated by the crustal structure. Because of the uncertainty about the appropriate numerical values for some of the model's input parameters, we have examined the sensitivity of the model results to the planetary structural model (core radius and core and mantle densities), the mantle's viscosity stratification, and the mean crustal thickness. The model results are insensitive to the specific thickness or viscosity contrast of the high-viscosity surface layer and to the mean crustal thickness in the range 25 to 100 km. Models with a large core radius or with an upper mantle low-viscosity zone require implausibly large lateral variations in mantle temperature
Reconstructing Sea Level Using Cyclostationary Empirical Orthogonal Functions
Cyclostationary empirical orthogonal functions, derived from satellite altimetry, are combined with historical sea level measurements from tide gauges to reconstruct sea level fields from 1950 through 2009. Previous sea level reconstructions have utilized empirical orthogonal functions as basis functions, but by using cyclostationary empirical orthogonal functions and by addressing other aspects of the reconstruction procedure, an alternative sea level reconstruction can be computed. The procedure introduced here is capable of capturing the annual cycle and El Nio-Southern Oscillation (ENSO) signals back to 1950, with correlations between the reconstructed ENSO signal and common ENSO indices found to be over 0.9. The regional trends computed from the new reconstruction show good agreement with the trends obtained from the satellite altimetry, but some discrepancies are seen when comparing with previous sea level reconstructions over longer time periods. The computed rate of global mean sea level rise from the reconstructed time series is 1.97 mm/yr from 1950 to 2009 and 3.22 mm/yr from 1993 to 2009
Contribution of the Pacific Decadal Oscillation to Global Mean Sea Level Trends
Understanding and explaining the trend in global mean sea level (GMSL) have important implications for future projections of sea level rise. While measurements from satellite altimetry have provided accurate estimates of GMSL, the modern altimetry record has only now reached 20 years in length, making it difficult to assess the contribution of decadal to multidecadal climate signals to the global trend. Here, we use a sea level reconstruction to study the 20 year trends in sea level since 1950. In particular, we show that the Pacific Decadal Oscillation (PDO) contributes significantly to the 20 year trends in GMSL. We estimate the PDO contribution to the GMSL trend over the past 20 years to be approximately 0.49 ± 0.25 mm/year and find that removing the PDO contribution reduces the acceleration in GMSL estimated over the past 60 years. Key Points The PDO has contributed 0.49 mm/yr to the current altimetry GMSL trend The PDO has a large impact on regional and global sea level trends Reconstructions allow for the study of decadal-scale climate variability
- …
