39 research outputs found

    The interaction of Wnt-11 and signalling cascades in prostate cancer

    Get PDF
    Prostate cancer (PCa) is the second most common cancer among the male population. Conventional therapies target androgen signalling, which drives tumour growth; however, they provide limited survival benefits for patients. It is essential, therefore, to develop a more specific biomarker than the current gold standard, PSA testing. The Wnt signalling pathway induces expression of target genes through cell surface receptors. A non-canonical member of this family, Wnt-11, is evolutionarily highly conserved and is normally expressed by various cells in the developing embryo, as well as in the heart, liver and skeletal muscle of adult humans. We comprehensively review several cell signalling pathways to explain how they interact with Wnt-11, demonstrating its use as a potential biomarker for PCa. Several studies have shown that the expression of Wnt-11 is associated with gastric, renal and colorectal adenocarcinomas and PCa. Moreover, Wnt-11 affects extracellular matrix composition and cytoskeletal rearrangement, and it is required for proliferation and/or survival during cell differentiation. It was found that PCa cell lines express high levels of Wnt-11, which allows differentiation of the epithelial prostate tumour cells to neuron-like (NE) cells. The NE cells produce additional factors that can cause regression after treatment. Accumulating evidence shows that Wnt-11 could be a potential biomarker in diagnosing PCa. Many studies have shown both non-canonical and canonical Wnts interact with several signalling cascades such as PKC, JNK, NF-κB, Rho, PKA and PI3K. In particular, evidence demonstrates Wnt-11 is involved in the progression of PCa, thus it could have the potential to become both a specific disease marker and an important therapeutic target

    Unlocking the Transcriptomes of Two Carcinogenic Parasites, Clonorchis sinensis and Opisthorchis viverrini

    Get PDF
    The two parasitic trematodes, Clonorchis sinensis and Opisthorchis viverrini, have a major impact on the health of tens of millions of humans throughout Asia. The greatest impact is through the malignant cancer ( = cholangiocarcinoma) that these parasites induce in chronically infected people. Therefore, both C. sinensis and O. viverrini have been classified by the World Health Organization (WHO) as Group 1 carcinogens. Despite their impact, little is known about these parasites and their interplay with the host at the molecular level. Recent advances in genomics and bioinformatics provide unique opportunities to gain improved insights into the biology of parasites as well as their relationships with their hosts at the molecular level. The present study elucidates the transcriptomes of C. sinensis and O. viverrini using a platform based on next-generation (high throughput) sequencing and advanced in silico analyses. From 500,000 sequences, >50,000 sequences were assembled for each species and categorized as biologically relevant based on homology searches, gene ontology and/or pathway mapping. The results of the present study could assist in defining molecules that are essential for the development, reproduction and survival of liver flukes and/or that are linked to the development of cholangiocarcinoma. This study also lays a foundation for future genomic and proteomic research of C. sinensis and O. viverrini and the cancers that they are known to induce, as well as novel intervention strategies

    How educational theory can inform the training and practice of plastic surgeons

    Get PDF
    It is important to optimize our current learning and teaching models, particularly in a climate of decreased clinical exposure. With technical advancements and clinical care now more accountable, traditional methods of skill acquisition need to be revisited. The past decade has seen changes in plastic surgery curricula. There has also been a shift toward competency-based training programs reflecting the growing emphasis on outcomes-based surgical education. This review explores the role of educational theory in promoting effective learning in practical skills teaching. Key models of educational theory are presented and their application to plastic surgery training to an expert level are highlighted. These models include (1) learning within communities of practice (Lave and Wenger’s theory); (2) the role of the zone of proximal development and importance of the availability of expert assistance (Vygotsky’s theory); (3) skill acquisition and retention (Dreyfus’ and Dreyfus’, and Fitts’ and Posner’s theories); (4) development of expertise after repeated practice and regular reinforcement (Ericsson’s theory); and (5) the assessment of competence (Miller’s triangle). Future plastic surgeons need to possess a thorough understanding of the technical and nontechnical skills required to manage patients effectively. Surgical educators are therefore compelled to develop practical training programs that can teach each of these skills in a safe, learner-centric manner. It is hoped that new approaches to surgical skills training are designed in light of our understanding of educational theory to optimize the training of the next generation of plastic surgeons

    Percutaneous Endoscopic Gastrostomy

    No full text

    FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation.

    Get PDF
    The Fbxw7 (F-box/WD repeat-containing protein 7; also called CDC4, Sel10, Ago, and Fbw7) component of the SCF (Skp1/Cullin/F-box protein) E3 ubiquitin ligase complex acts as a tumor suppressor in several tissues and targets multiple transcriptional activators and protooncogenes for ubiquitin-mediated degradation. To understand Fbxw7 function in the murine intestine, in this study, we specifically deleted Fbxw7 in the murine gut using Villin-Cre (Fbxw7(ΔG)). In wild-type mice, loss of Fbxw7 in the gut altered homeostasis of the intestinal epithelium, resulted in elevated Notch and c-Jun expression, and induced development of adenomas at 9-10 mo of age. In the context of APC (adenomatous polyposis coli) deficiency (Apc(Min/+) mice), loss of Fbxw7 accelerated intestinal tumorigenesis and death and promoted accumulation of β-catenin in adenomas at late but not early time points. At early time points, Fbxw7 mutant tumors showed accumulation of the DEK protooncogene. DEK expression promoted cell division and altered splicing of tropomyosin (TPM) RNA, which may also influence cell proliferation. DEK accumulation and altered TPM RNA splicing were also detected in FBXW7 mutant human colorectal tumor tissues. Given their reduced lifespan and increased incidence of intestinal tumors, Apc(Min/+)Fbxw7(ΔG) mice may be used for testing carcinogenicity and drug screening

    FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation.

    No full text
    The Fbxw7 (F-box/WD repeat-containing protein 7; also called CDC4, Sel10, Ago, and Fbw7) component of the SCF (Skp1/Cullin/F-box protein) E3 ubiquitin ligase complex acts as a tumor suppressor in several tissues and targets multiple transcriptional activators and protooncogenes for ubiquitin-mediated degradation. To understand Fbxw7 function in the murine intestine, in this study, we specifically deleted Fbxw7 in the murine gut using Villin-Cre (Fbxw7(ΔG)). In wild-type mice, loss of Fbxw7 in the gut altered homeostasis of the intestinal epithelium, resulted in elevated Notch and c-Jun expression, and induced development of adenomas at 9-10 mo of age. In the context of APC (adenomatous polyposis coli) deficiency (Apc(Min/+) mice), loss of Fbxw7 accelerated intestinal tumorigenesis and death and promoted accumulation of β-catenin in adenomas at late but not early time points. At early time points, Fbxw7 mutant tumors showed accumulation of the DEK protooncogene. DEK expression promoted cell division and altered splicing of tropomyosin (TPM) RNA, which may also influence cell proliferation. DEK accumulation and altered TPM RNA splicing were also detected in FBXW7 mutant human colorectal tumor tissues. Given their reduced lifespan and increased incidence of intestinal tumors, Apc(Min/+)Fbxw7(ΔG) mice may be used for testing carcinogenicity and drug screening
    corecore