11,461 research outputs found
On the stability and growth of single myelin figures
Myelin figures are long thin cylindrical structures that typically grow as a
dense tangle when water is added to the concentrated lamellar phase of certain
surfactants. We show that, starting from a well-ordered initial state, single
myelin figures can be produced in isolation thus allowing a detailed study of
their growth and stability. These structures grow with their base at the
exposed edges of bilayer stacks from which material is transported into the
myelin. Myelins only form and grow in the presence of a driving stress; when
the stress is removed, the myelins retract.Comment: 4 pages, 8 figures. Revised version, 1 new figure, additional
reference
Spin-orbit coupling induced by a mass gradient
The existence of a spin-orbit coupling (SOC) induced by the gradient of the
effective mass in low-dimensional heterostructures is revealed. In structurally
asymmetric quasi-two-dimensional semiconductor heterostructures the presence of
a mass gradient across the interfaces results in a SOC which competes with the
SOC created by the electric field in the valence band. However, in graded
quantum wells subjected to an external electric field, the mass-gradient
induced SOC can be finite even when the electric field in the valence band
vanishes.Comment: 4 pages, 2 figures, 1 tabl
Zitterbewegung is not an observable
It has recently been claimed that Zitterbewegung has been observed. However,
we argue that it is not an observable and that the authors' observations must
be reinterpreted
meson in dense matter
We study the properties of mesons in nuclear matter using a
unitary approach in coupled channels within the framework of the local hidden
gauge formalism and incorporating the decay channel in matter. The
in-medium interaction accounts for Pauli blocking effects and
incorporates the self-energy in a self-consistent manner. We also
obtain the (off-shell) spectral function and analyze its behaviour
at finite density and momentum. At normal nuclear matter density, the meson feels a moderately attractive potential while the width
becomes five times larger than in free space. We estimate the transparency
ratio of the reaction, which we propose as
a feasible scenario at present facilities to detect the changes of the
properties of the meson in the nuclear medium.Comment: 26 pages, 9 figures, one new section added, version published in
Phys. ReV. C, http://link.aps.org/doi/10.1103/PhysRevC.82.04521
Kinetic pathways of multi-phase surfactant systems
The relaxation following a temperature quench of two-phase (lamellar and
sponge phase) and three-phase (lamellar, sponge and micellar phase) samples,
has been studied in an SDS/octanol/brine system. In the three-phase case we
have observed samples that are initially mainly sponge phase with lamellar and
micellar phase on the top and bottom respectively. Upon decreasing temperature
most of the volume of the sponge phase is replaced by lamellar phase. During
the equilibriation we have observed three regimes of behaviour within the
sponge phase: (i) disruption in the sponge texture, then (ii) after the sponge
phase homogenises there is a lamellar nucleation regime and finally (iii) a
bizarre plume connects the lamellar phase with the micellar phase. The
relaxation of the two-phase sample proceeds instead in two stages. First
lamellar drops nucleate in the sponge phase forming a onion `gel' structure.
Over time the lamellar structure compacts while equilibriating into a two phase
lamellar/sponge phase sample. We offer possible explanatioins for some of these
observations in the context of a general theory for phase kinetics in systems
with one fast and one slow variable.Comment: 1 textfile, 20 figures (jpg), to appear in PR
Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions
The thermoelectric properties of intermetallic compounds with Ce or Yb ions
are explained by the single-impurity Anderson model which takes into account
the crystal-field splitting of the 4{\it f} ground-state multiplet, and assumes
a strong Coulomb repulsion which restricts the number of {\it f} electrons or
{\it f} holes to for Ce and for Yb ions. Using
the non-crossing approximation and imposing the charge neutrality constraint on
the local scattering problem at each temperature and pressure, the excitation
spectrum and the transport coefficients of the model are obtained. The
thermopower calculated in such a way exhibits all the characteristic features
observed in Ce and Yb intermetallics. Calculating the effect of pressure on
various characteristic energy scales of the model, we obtain the phase
diagram which agrees with the experimental data on CeRuSi,
CeCuSi, CePdSi, and similar compounds. The evolution of the
thermopower and the electrical resistance as a function of temperature,
pressure or doping is explained in terms of the crossovers between various
fixed points of the model and the redistribution of the single-particle
spectral weight within the Fermi window.Comment: 13 pages, 11 figure
An explanation of the as a bound state
We use the interaction in the hidden gauge formalism to
dynamically generate and resonances. We show,
through a comparison of the results from this analysis and from a quark model
study with data, that the
and resonances can be assigned to bound
states. More precisely the can be interpreted as a
bound state whereas the and
may contain an important component. This
interpretation allows for a solution of a long-standing puzzle concerning the
description of these resonances in constituent quark models. In addition we
also obtain degenerate states but their
assignment to experimental resonances is more uncertain.Comment: 19 pags, 8 fig
Limits on Electroweak Instanton-Induced Processes with Multiple Boson Production
Recently, the CMS collaboration has reported their search for electroweak
instanton-like processes with anomalous violation assuming multi-fermion
but zero-boson final states. On the other hand, many theoretical studies
suggest that anomalous processes may have an observably large production
rate only if their final state contains a large number of electroweak gauge
bosons. In this paper, we compare collider signatures of zero- and multi-boson
events of anomalous violation at the LHC and derive an upper limit on the
cross-section for the multi-boson process by recasting the CMS analysis.Comment: 14 pages, 6 figures; JHEP version with typographic errors fixe
Cavity-QED with cold atoms trapped in a double-well potential
We investigate the interplay dynamics of a cavity qed system, where the
two-level atoms are trapped in a double-well potential, and the cavity mode,
with a frequency largely detuned to the atomic level splitting, is driven by a
probe laser. The interaction between the center-of-mass motion of the atoms and
the cavity mode is induced by the position dependent atom-field coupling. The
dynamics of the system is characterized by two distinct time scales, the
inverse of the atomic interwell tunneling rate and the inverse of the cavity
loss rate. The system shows drastically different (quasi) steady behaviors in
the short-time and long-time intervals.Comment: 8 pages, 5 figue
- …
