11,461 research outputs found

    On the stability and growth of single myelin figures

    Full text link
    Myelin figures are long thin cylindrical structures that typically grow as a dense tangle when water is added to the concentrated lamellar phase of certain surfactants. We show that, starting from a well-ordered initial state, single myelin figures can be produced in isolation thus allowing a detailed study of their growth and stability. These structures grow with their base at the exposed edges of bilayer stacks from which material is transported into the myelin. Myelins only form and grow in the presence of a driving stress; when the stress is removed, the myelins retract.Comment: 4 pages, 8 figures. Revised version, 1 new figure, additional reference

    Spin-orbit coupling induced by a mass gradient

    Get PDF
    The existence of a spin-orbit coupling (SOC) induced by the gradient of the effective mass in low-dimensional heterostructures is revealed. In structurally asymmetric quasi-two-dimensional semiconductor heterostructures the presence of a mass gradient across the interfaces results in a SOC which competes with the SOC created by the electric field in the valence band. However, in graded quantum wells subjected to an external electric field, the mass-gradient induced SOC can be finite even when the electric field in the valence band vanishes.Comment: 4 pages, 2 figures, 1 tabl

    Zitterbewegung is not an observable

    Get PDF
    It has recently been claimed that Zitterbewegung has been observed. However, we argue that it is not an observable and that the authors' observations must be reinterpreted

    Kˉ\bar K^* meson in dense matter

    Full text link
    We study the properties of Kˉ\bar K^* mesons in nuclear matter using a unitary approach in coupled channels within the framework of the local hidden gauge formalism and incorporating the Kˉπ\bar K \pi decay channel in matter. The in-medium KˉN\bar K^* N interaction accounts for Pauli blocking effects and incorporates the Kˉ\bar K^* self-energy in a self-consistent manner. We also obtain the Kˉ\bar K^* (off-shell) spectral function and analyze its behaviour at finite density and momentum. At normal nuclear matter density, the Kˉ\bar K^* meson feels a moderately attractive potential while the Kˉ\bar K^* width becomes five times larger than in free space. We estimate the transparency ratio of the γAK+KA\gamma A \to K^+ K^{* -} A^\prime reaction, which we propose as a feasible scenario at present facilities to detect the changes of the properties of the Kˉ\bar K^* meson in the nuclear medium.Comment: 26 pages, 9 figures, one new section added, version published in Phys. ReV. C, http://link.aps.org/doi/10.1103/PhysRevC.82.04521

    Kinetic pathways of multi-phase surfactant systems

    Full text link
    The relaxation following a temperature quench of two-phase (lamellar and sponge phase) and three-phase (lamellar, sponge and micellar phase) samples, has been studied in an SDS/octanol/brine system. In the three-phase case we have observed samples that are initially mainly sponge phase with lamellar and micellar phase on the top and bottom respectively. Upon decreasing temperature most of the volume of the sponge phase is replaced by lamellar phase. During the equilibriation we have observed three regimes of behaviour within the sponge phase: (i) disruption in the sponge texture, then (ii) after the sponge phase homogenises there is a lamellar nucleation regime and finally (iii) a bizarre plume connects the lamellar phase with the micellar phase. The relaxation of the two-phase sample proceeds instead in two stages. First lamellar drops nucleate in the sponge phase forming a onion `gel' structure. Over time the lamellar structure compacts while equilibriating into a two phase lamellar/sponge phase sample. We offer possible explanatioins for some of these observations in the context of a general theory for phase kinetics in systems with one fast and one slow variable.Comment: 1 textfile, 20 figures (jpg), to appear in PR

    Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions

    Full text link
    The thermoelectric properties of intermetallic compounds with Ce or Yb ions are explained by the single-impurity Anderson model which takes into account the crystal-field splitting of the 4{\it f} ground-state multiplet, and assumes a strong Coulomb repulsion which restricts the number of {\it f} electrons or {\it f} holes to nf1n_f\leq 1 for Ce and nfhole1n_f^{hole}\leq 1 for Yb ions. Using the non-crossing approximation and imposing the charge neutrality constraint on the local scattering problem at each temperature and pressure, the excitation spectrum and the transport coefficients of the model are obtained. The thermopower calculated in such a way exhibits all the characteristic features observed in Ce and Yb intermetallics. Calculating the effect of pressure on various characteristic energy scales of the model, we obtain the (T,p)(T,p) phase diagram which agrees with the experimental data on CeRu2_{2}Si2_2, CeCu2_{2}Si2_2, CePd2_{2}Si2_2, and similar compounds. The evolution of the thermopower and the electrical resistance as a function of temperature, pressure or doping is explained in terms of the crossovers between various fixed points of the model and the redistribution of the single-particle spectral weight within the Fermi window.Comment: 13 pages, 11 figure

    An explanation of the Δ5/2(1930)\Delta_{5/2^{-}}(1930) as a ρΔ\rho\Delta bound state

    Full text link
    We use the ρΔ\rho\Delta interaction in the hidden gauge formalism to dynamically generate NN^{\ast} and Δ\Delta^{\ast} resonances. We show, through a comparison of the results from this analysis and from a quark model study with data, that the Δ5/2(1930),\Delta_{5/2^{-}}(1930), Δ3/2(1940)\Delta_{3/2^{-}}(1940) and Δ1/2(1900)\Delta_{1/2^{-}}(1900) resonances can be assigned to ρΔ\rho\Delta bound states. More precisely the Δ5/2(1930)\Delta_{5/2^{-}}(1930) can be interpreted as a ρΔ\rho\Delta bound state whereas the Δ3/2(1940)\Delta_{3/2^{-}}(1940) and Δ1/2(1900)\Delta_{1/2^{-}}(1900) may contain an important ρΔ\rho\Delta component. This interpretation allows for a solution of a long-standing puzzle concerning the description of these resonances in constituent quark models. In addition we also obtain degenerate JP=1/2,3/2,5/2J^{P}=1/2^{-},3/2^{-},5/2^{-} NN^{*} states but their assignment to experimental resonances is more uncertain.Comment: 19 pags, 8 fig

    Limits on Electroweak Instanton-Induced Processes with Multiple Boson Production

    Full text link
    Recently, the CMS collaboration has reported their search for electroweak instanton-like processes with anomalous B+LB+L violation assuming multi-fermion but zero-boson final states. On the other hand, many theoretical studies suggest that anomalous B+LB+L processes may have an observably large production rate only if their final state contains a large number of electroweak gauge bosons. In this paper, we compare collider signatures of zero- and multi-boson events of anomalous B+LB+L violation at the LHC and derive an upper limit on the cross-section for the multi-boson process by recasting the CMS analysis.Comment: 14 pages, 6 figures; JHEP version with typographic errors fixe

    Cavity-QED with cold atoms trapped in a double-well potential

    Full text link
    We investigate the interplay dynamics of a cavity qed system, where the two-level atoms are trapped in a double-well potential, and the cavity mode, with a frequency largely detuned to the atomic level splitting, is driven by a probe laser. The interaction between the center-of-mass motion of the atoms and the cavity mode is induced by the position dependent atom-field coupling. The dynamics of the system is characterized by two distinct time scales, the inverse of the atomic interwell tunneling rate and the inverse of the cavity loss rate. The system shows drastically different (quasi) steady behaviors in the short-time and long-time intervals.Comment: 8 pages, 5 figue
    corecore